74 research outputs found
Towards IASI-New Generation (IASI-NG): impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry and climate variables
Besides their strong contribution to weather forecast improvement through data assimilation, thermal infrared sounders onboard polar-orbiting platforms are now playing a key role for monitoring atmospheric composition changes. The Infrared Atmospheric Sounding Interferometer (IASI) instrument developed by the French space agency (CNES) and launched by Eumetsat onboard the Metop satellite series is providing essential inputs for weather forecasting and pollution/climate monitoring owing to its smart combination of large horizontal swath, good spectral resolution and high radiometric performance. EUMETSAT is currently preparing the next polar-orbiting program (EPS-SG) with the Metop-SG satellite series that should be launched around 2020. In this framework, CNES is studying the concept of a new instrument, the IASI-New Generation (IASI-NG), characterized by an improvement of both spectral and radiometric characteristics as compared to IASI, with three objectives: (i) continuity of the IASI/Metop series; (ii) improvement of vertical resolution; (iii) improvement of the accuracy and detection threshold for atmospheric and surface components. In this paper, we show that an improvement of spectral resolution and radiometric noise fulfill these objectives by leading to (i) a better vertical coverage in the lower part of the troposphere, thanks to the increase in spectral resolution; (ii) an increase in the accuracy of the retrieval of several thermodynamic, climate and chemistry variables, thanks to the improved signal-to-noise ratio as well as less interferences between the signatures of the absorbing species in the measured radiances. The detection limit of several atmospheric species is also improved. We conclude that IASI-NG has the potential for strongly benefiting the numerical weather prediction, chemistry and climate communities now connected through the European GMES/Copernicus initiative
Towards IASI-New Generation (IASI-NG): impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry and climate variables
Besides their strong contribution to weather forecast improvement through data assimilation, thermal infrared sounders onboard polar-orbiting platforms are now playing a key role for monitoring atmospheric composition changes. The Infrared Atmospheric Sounding Interferometer (IASI) instrument developed by the French space agency (CNES) and launched by Eumetsat onboard the Metop satellite series is providing essential inputs for weather forecasting and pollution/climate monitoring owing to its smart combination of large horizontal swath, good spectral resolution and high radiometric performance. EUMETSAT is currently preparing the next polar-orbiting program (EPS-SG) with the Metop-SG satellite series that should be launched around 2020. In this framework, CNES is studying the concept of a new instrument, the IASI-New Generation (IASI-NG), characterized by an improvement of both spectral and radiometric characteristics as compared to IASI, with three objectives: (i) continuity of the IASI/Metop series; (ii) improvement of vertical resolution; (iii) improvement of the accuracy and detection threshold for atmospheric and surface components. In this paper, we show that an improvement of spectral resolution and radiometric noise fulfill these objectives by leading to (i) a better vertical coverage in the lower part of the troposphere, thanks to the increase in spectral resolution; (ii) an increase in the accuracy of the retrieval of several thermodynamic, climate and chemistry variables, thanks to the improved signal-to-noise ratio as well as less interferences between the signatures of the absorbing species in the measured radiances. The detection limit of several atmospheric species is also improved. We conclude that IASI-NG has the potential for strongly benefiting the numerical weather prediction, chemistry and climate communities now connected through the European GMES/Copernicus initiative
Synergetic use of IASI and TROPOMI space borne sensors for generating a tropospheric methane profile product
The thermal infrared nadir spectra of IASI (Infrared Atmospheric Sounding Interferometer) are successfully used for retrievals of different atmospheric trace gas profiles. However, these retrievals offer generally reduced information about the lowermost tropospheric layer due to the lack of thermal contrast close to the surface. Spectra of scattered solar radiation observed in the near and/or short wave infrared, for instance by TROPOMI (TROPOspheric Monitoring Instrument) offer higher sensitivity near ground and are used for the retrieval of total column averaged mixing ratios of a variety of atmospheric trace gases. Here we present a method for the synergetic use of IASI profile and TROPOMI total column data. Our method uses the output of the individual retrievals and consists of linear algebra a posteriori calculations (i.e. calculation after the individual retrievals). We show that this approach is largely equivalent to applying the spectra of the different sensors together in a single retrieval procedure, but with the substantial advantage of being applicable to data generated with different individual retrieval processors, of being very time efficient, and of directly benefiting from the high quality and most recent improvements of the individual retrieval processors.This research has largely benefit from funds of the Deutsche Forschungsgemeinschaft (provided for the two projects MOTIV and TEDDY with IDs/Geschäftszeichen 290612604/GZ:SCHN1126/2-1 and 416767181/GZ:SCHN1126/5-1, respectively) and from support by the European Space Agency in the context the "Sentinel-5p+Innovation (S5p+I) - Water Vapour Isotopologues (H2O-ISO)" activities. Furthermore, we acknowledge funds from the Ministerio de EconomĂa y Competividad from Spain for the project INMENSE (CGL2016-80688-P)
Synergetic use of IASI profile and TROPOMI total-column level 2 methane retrieval products
The thermal infrared nadir spectra of IASI (Infrared Atmospheric Sounding Interferometer) are successfully used for retrievals of different atmospheric trace gas profiles. However, these retrievals offer generally reduced information about the lowermost tropospheric layer due to the lack of thermal contrast close to the surface. Spectra of scattered solar radiation observed in the near-infrared and/or shortwave infrared, for instance by TROPOMI (TROPOspheric Monitoring Instrument), offer higher sensitivity near the ground and are used for the retrieval of total-column-averaged mixing ratios of a variety of atmospheric trace gases. Here we present a method for the synergetic use of IASI profile and TROPOMI total-column level 2 retrieval products. Our method uses the output of the individual retrievals and consists of linear algebra a posteriori calculations (i.e. calculation after the individual retrievals). We show that this approach has strong theoretical similarities to applying the spectra of the different sensors together in a single retrieval procedure but with the substantial advantage of being applicable to data generated with different individual retrieval processors, of being very time efficient, and of directly benefiting from the high quality and most recent improvements of the individual retrieval processors.
We demonstrate the method exemplarily for atmospheric methane (CH). We perform a theoretical evaluation and show that the a posteriori combination method yields a total-column-averaged CH product (XCH) that conserves the good sensitivity of the corresponding TROPOMI product while merging it with the high-quality upper troposphere–lower stratosphere (UTLS) CH partial-column information of the corresponding IASI product. As a consequence, the combined product offers additional sensitivity for the tropospheric CH partial column, which is not provided by the individual TROPOMI nor the individual IASI product. The theoretically predicted synergetic effect is verified by comparisons to CH reference data obtained from collocated XCH measurements at 14 globally distributed TCCON (Total Carbon Column Observing Network) stations, CH profile measurements made by 36 individual AirCore soundings, and tropospheric CH data derived from continuous ground-based in situ observations made at two nearby Global Atmospheric Watch (GAW) mountain stations. The comparisons clearly demonstrate that the combined product can reliably detect the actual variations of atmospheric XCH, CH in the UTLS, and CH in the troposphere. A similar good reliability for the latter is not achievable by the individual TROPOMI and IASI products
Variability and quasi-decadal changes in the methane budget overthe period 2000–2012
Following the recent Global Carbon Project (GCP)
synthesis of the decadal methane (CH4/ budget over 2000–
2012 (Saunois et al., 2016), we analyse here the same dataset
with a focus on quasi-decadal and inter-annual variability in
CH4 emissions. The GCP dataset integrates results from topdown
studies (exploiting atmospheric observations within an
atmospheric inverse-modelling framework) and bottom-up
models (including process-based models for estimating land
surface emissions and atmospheric chemistry), inventories of
anthropogenic emissions, and data-driven approaches.The annual global methane emissions from top-down studies,
which by construction match the observed methane
growth rate within their uncertainties, all show an increase in
total methane emissions over the period 2000–2012, but this
increase is not linear over the 13 years. Despite differences
between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total
methane emissions over the period 2000–2006, during
the plateau of atmospheric methane mole fractions, and also
over the period 2008–2012, during the renewed atmospheric
methane increase. However, the top-down ensemble mean
produces an emission shift between 2006 and 2008, leading
to 22 [16–32] Tg CH4 yr1 higher methane emissions
over the period 2008–2012 compared to 2002–2006. This
emission increase mostly originated from the tropics, with
a smaller contribution from mid-latitudes and no significant
change from boreal regions.
The regional contributions remain uncertain in top-down
studies. Tropical South America and South and East Asia
seem to contribute the most to the emission increase in the
tropics. However, these two regions have only limited atmospheric
measurements and remain therefore poorly constrained.
The sectorial partitioning of this emission increase between
the periods 2002–2006 and 2008–2012 differs from
one atmospheric inversion study to another. However, all topdown
studies suggest smaller changes in fossil fuel emissions
(from oil, gas, and coal industries) compared to the
mean of the bottom-up inventories included in this study.
This difference is partly driven by a smaller emission change
in China from the top-down studies compared to the estimate
in the Emission Database for Global Atmospheric Research
(EDGARv4.2) inventory, which should be revised to smaller
values in a near future. We apply isotopic signatures to the
emission changes estimated for individual studies based on
five emission sectors and find that for six individual top-down
studies (out of eight) the average isotopic signature of the
emission changes is not consistent with the observed change
in atmospheric 13CH4. However, the partitioning in emission
change derived from the ensemble mean is consistent with
this isotopic constraint. At the global scale, the top-down ensemble
mean suggests that the dominant contribution to the
resumed atmospheric CH4 growth after 2006 comes from microbial
sources (more from agriculture and waste sectors than
from natural wetlands), with an uncertain but smaller contribution
from fossil CH4 emissions. In addition, a decrease in
biomass burning emissions (in agreement with the biomass
burning emission databases) makes the balance of sources
consistent with atmospheric 13CH4 observations.
In most of the top-down studies included here, OH concentrations
are considered constant over the years (seasonal variations
but without any inter-annual variability). As a result,
the methane loss (in particular through OH oxidation) varies
mainly through the change in methane concentrations and not
its oxidants. For these reasons, changes in the methane loss
could not be properly investigated in this study, although it
may play a significant role in the recent atmospheric methane
changes as briefly discussed at the end of the paper.Published11135–111616A. Geochimica per l'ambienteJCR Journa
- …