7 research outputs found

    Caractérisation fonctionnelle du nouveau gène mitochondrial mtaltnd4 chez l’humain

    Full text link
    Chez les cellules eucaryotes, la mitochondrie est une organelle impliquée dans plusieurs fonctions cellulaires (production d’énergie, apoptose, production de ROS, prolifération, signalisation cellulaire, vieillissement, immunité et plus encore) et possédant son propre génome, soit l’ADN mitochondrial (ADNmt). Chez l’humain, on croyait que l’ADNmt ne codait que pour 37 gènes impliqués dans la production d’énergie et la traduction mitochondriale. Cependant, le potentiel codant du génome mitochondrial aurait été sous-estimé. Il a récemment été démontré qu’à l’intérieur de ces principaux gènes connus pouvaient se cacher plusieurs petits gènes alternatifs. Ceux-ci se retrouvent au sein de régions non codantes ou possèdent des séquences d’initiation ou de terminaison de la traduction distinctes de celles du gène de référence dans lequel ils se retrouvent. Ils codent pour des micropeptides dérivés des mitochondries qui possèdent un large éventail de fonctions, s’ajoutant à la longue liste de fonctions dans lesquelles la mitochondrie est déjà impliquée. Parmi ces peptides, on retrouve l’Humanine, MOTS-c, SHLP1-6, Gau et SHMOOSE. Nous avons précédemment découvert un nouveau gène alternatif situé dans le gène nd4, nommé mtaltnd4. Dans cette étude, nous visions à clarifier les fonctions du peptide alternatif correspondant MTALTND4 en étudiant son patron d’expression dans les tissus humains, l’impact de plusieurs stress sur son expression, l’impact du peptide sur la transcription des gènes, et ses partenaires d’interaction. Nous avons découvert que MTALTND4 pourrait être une molécule de signalisation sécrétée par les cellules en réponse au stress et affectant la physiologie pour induire un état de dépression bioénergétique en réduisant les processus de production et de demande en ATP. Plusieurs autres indices révélés par nos expériences suggèrent que MTALTND4 pourrait être une protéine multifonctionnelle impliquée dans de nombreuses voies de régulation.In eukaryotic cells, mitochondria are organelles involved in many cellular functions (energy production, apoptosis, ROS production, proliferation, cell signaling aging, immunity and more) and that possess their own genome, namely mitochondrial DNA (mtDNA). In humans, mtDNA was believed to encode only 37 genes involved in energy production and mitochondrial translation. However, the coding potential of the mitochondrial genome has been underestimated. It has recently been shown that within these main genes could hide several small alternative genes (i.e., genes withing non-coding regions or with translation initiation/termination sequences that are distinct from the reference gene sequences in which they are found). They code for mitochondrial-derived micropeptides (MDPs) that have a broad spectrum of functions, adding to the extensive list of functions in which mitochondria are already involved. These peptides include Humanine, MOTS-c, SHLP1-6, Gau and SHMOOSE. We have previously discovered a new alternative gene located in the nd4 gene, termed mtaltnd4. In this study, we aim to clarify the functions of the corresponding alternative peptide MTALTND4 by studying its expression pattern in human tissues, the impact of several stresses on its expression, the impact of the peptide on gene transcription, and its interaction partners. We have found that MTALTND4 could be a signaling molecule secreted by cells in response to stress and would affect physiology to induce a state of bioenergetic depression by reducing ATP-producing and ATP-demanding processes. Several other clues revealed by our experiments suggest that MTALTND4 could be a multifunctional protein involved in numerous regulatory pathways

    A small protein coded within the mitochondrial canonical gene nd4 regulates mitochondrial bioenergetics

    Get PDF
    BACKGROUND: Mitochondria have a central role in cellular functions, aging, and in certain diseases. They possess their own genome, a vestige of their bacterial ancestor. Over the course of evolution, most of the genes of the ancestor have been lost or transferred to the nucleus. In humans, the mtDNA is a very small circular molecule with a functional repertoire limited to only 37 genes. Its extremely compact nature with genes arranged one after the other and separated by short non-coding regions suggests that there is little room for evolutionary novelties. This is radically different from bacterial genomes, which are also circular but much larger, and in which we can find genes inside other genes. These sequences, different from the reference coding sequences, are called alternatives open reading frames or altORFs, and they are involved in key biological functions. However, whether altORFs exist in mitochondrial protein-coding genes or elsewhere in the human mitogenome has not been fully addressed. RESULTS: We found a downstream alternative ATG initiation codon in the + 3 reading frame of the human mitochondrial nd4 gene. This newly characterized altORF encodes a 99-amino-acid-long polypeptide, MTALTND4, which is conserved in primates. Our custom antibody, but not the pre-immune serum, was able to immunoprecipitate MTALTND4 from HeLa cell lysates, confirming the existence of an endogenous MTALTND4 peptide. The protein is localized in mitochondria and cytoplasm and is also found in the plasma, and it impacts cell and mitochondrial physiology. CONCLUSIONS: Many human mitochondrial translated ORFs might have so far gone unnoticed. By ignoring mtaltORFs, we have underestimated the coding potential of the mitogenome. Alternative mitochondrial peptides such as MTALTND4 may offer a new framework for the investigation of mitochondrial functions and diseases

    A small protein coded within the mitochondrial canonical gene nd4 regulates mitochondrial bioenergetics

    No full text
    Abstract Background Mitochondria have a central role in cellular functions, aging, and in certain diseases. They possess their own genome, a vestige of their bacterial ancestor. Over the course of evolution, most of the genes of the ancestor have been lost or transferred to the nucleus. In humans, the mtDNA is a very small circular molecule with a functional repertoire limited to only 37 genes. Its extremely compact nature with genes arranged one after the other and separated by short non-coding regions suggests that there is little room for evolutionary novelties. This is radically different from bacterial genomes, which are also circular but much larger, and in which we can find genes inside other genes. These sequences, different from the reference coding sequences, are called alternatives open reading frames or altORFs, and they are involved in key biological functions. However, whether altORFs exist in mitochondrial protein-coding genes or elsewhere in the human mitogenome has not been fully addressed. Results We found a downstream alternative ATG initiation codon in the + 3 reading frame of the human mitochondrial nd4 gene. This newly characterized altORF encodes a 99-amino-acid-long polypeptide, MTALTND4, which is conserved in primates. Our custom antibody, but not the pre-immune serum, was able to immunoprecipitate MTALTND4 from HeLa cell lysates, confirming the existence of an endogenous MTALTND4 peptide. The protein is localized in mitochondria and cytoplasm and is also found in the plasma, and it impacts cell and mitochondrial physiology. Conclusions Many human mitochondrial translated ORFs might have so far gone unnoticed. By ignoring mtaltORFs, we have underestimated the coding potential of the mitogenome. Alternative mitochondrial peptides such as MTALTND4 may offer a new framework for the investigation of mitochondrial functions and diseases

    Early diagenetic dolomitization and dedolomitization of Late Jurassic and earliest Cretaceous platform carbonates: A case study from the Jura Mountains (NW Switzerland, E France)

    Get PDF
    Early diagenetic dolomitization is a common feature in cyclic shallow-water carbonates throughout the geologic record. After their generation, dolomites may be subject to dedolomitization (re-calcification of dolomites), e.g. by contact with meteoric water during emersion. These patterns of dolomitization and subsequent dedolomitization frequently play a key role in unravelling the development and history of a carbonate platform. On the basis of excellent outcrops, detailed logging and sampling and integrating sedimentological work, high-resolution sequence stratigraphic interpretations, and isotope analyses (O, C), conceptual models on early diagenetic dolomitization and dedolomitization and their underlying mechanisms were developed for the Upper Jurassic / Lower Cretaceous Jura platform in north-western Switzerland and eastern France. Three different types of early diagenetic dolomites and two types of dedolomites were observed. Each is defined by a distinct petrographic/isotopic signature and a distinct spatial distribution pattern. Different types of dolomites are interpreted to have been formed by different mechanisms, such as shallow seepage reflux, evaporation on tidal flats, and microbially mediated selective dolomitization of burrows. Depending on the type of dolomite, sea water with normal marine to slightly enhanced salinities is proposed as dolomitizing fluid. Based on the data obtained, the main volume of dolomite was precipitated by a reflux mechanism that was switched on and off by high-frequency sea-level changes. It appears, however, that more than one dolomitization mechanism was active (pene)contemporaneously or several processes alternated in time. During early diagenesis, percolating meteoric waters obviously played an important role in the dedolomitization of carbonate rocks that underlie exposure surfaces. Cyclostratigraphic interpretation of the sedimentary succession allows for estimates on the timing of early diagenetic (de)dolomitization. These results are an important step towards a better understanding of the link between high-frequency, probably orbitally forced, sea-level oscillations and early dolomitization under Mesozoic greenhouse conditions
    corecore