763 research outputs found

    TCR sequencing: applications in immuno-oncology research

    Get PDF

    Evolution of MHC class I genes in the endangered loggerhead sea turtle (Caretta caretta) revealed by 454 amplicon sequencing

    Get PDF
    Background: In evolutionary and conservation biology, parasitism is often highlighted as a major selective pressure. To fight against parasites and pathogens, genetic diversity of the immune genes of the major histocompatibility complex (MHC) are particularly important. However, the extensive degree of polymorphism observed in these genes makes it difficult to conduct thorough population screenings. Methods: We utilized a genotyping protocol that uses 454 amplicon sequencing to characterize the MHC class I in the endangered loggerhead sea turtle (Caretta caretta) and to investigate their evolution at multiple relevant levels of organization. Results: MHC class I genes revealed signatures of trans-species polymorphism across several reptile species. In the studied loggerhead turtle individuals, it results in the maintenance of two ancient allelic lineages. We also found that individuals carrying an intermediate number of MHC class I alleles are larger than those with either a low or high number of alleles. Conclusions: Multiple modes of evolution seem to maintain MHC diversity in the loggerhead turtles, with relatively high polymorphism for an endangered species

    Draft Genome Sequence of Sorghum Grain Mold Fungus Epicoccum sorghinum, a Producer of Tenuazonic Acid

    Get PDF
    The facultative plant pathogen Epicoccum sorghinum is associated with grain mold of sorghum and produces the mycotoxin tenuazonic acid. This fungus can have serious economic impact on sorghum production. Here, we report the draft genome sequence of E. sorghinum (USPMTOX48)

    Genomic divergence between nine- and three-spined sticklebacks

    No full text
    Background: Comparative genomics approaches help to shed light on evolutionary processes that shape differentiation between lineages. The nine-spined stickleback (Pungitius pungitius) is a closely related species of the ecological ‘supermodel’ three-spined stickleback (Gasterosteus aculeatus). It is an emerging model system for evolutionary biology research but has garnered less attention and lacks extensive genomic resources. To expand on these resources and aid the study of sticklebacks in a phylogenetic framework, we characterized nine-spined stickleback transcriptomes from brain and liver using deep sequencing. Results: We obtained nearly eight thousand assembled transcripts, of which 3,091 were assigned as putative oneto- one orthologs to genes found in the three-spined stickleback. These sequences were used for evaluating overall differentiation and substitution rates between nine- and three-spined sticklebacks, and to identify genes that are putatively evolving under positive selection. The synonymous substitution rate was estimated to be 7.1 × 10-9 per site per year between the two species, and a total of 165 genes showed patterns of adaptive evolution in one or both species. A few nine-spined stickleback contigs lacked an obvious ortholog in three-spined sticklebacks but were found to match genes in other fish species, suggesting several gene losses within 13 million years since the divergence of the two stickleback species. We identified 47 SNPs in 25 different genes that differentiate pond and marine ecotypes. We also identified 468 microsatellites that could be further developed as genetic markers in nine-spined sticklebacks. Conclusion: With deep sequencing of nine-spined stickleback cDNA libraries, our study provides a significant increase in the number of gene sequences and microsatellite markers for this species, and identifies a number of genes showing patterns of adaptive evolution between nine- and three-spined sticklebacks. We also report several candidate genes that might be involved in differential adaptation between marine and freshwater nine-spined sticklebacks. This study provides a valuable resource for future studies aiming to identify candidate genes underlying ecological adaptation in this and other stickleback species

    Gut barrier-microbiota imbalances in early life lead to higher sensitivity to inflammation in a murine model of C-section delivery

    Get PDF
    Background Most interactions between the host and its microbiota occur at the gut barrier, and primary colonizers are essential in the gut barrier maturation in the early life. The mother–ofspring transmission of microorganisms is the most important factor infuencing microbial colonization in mammals, and C‑section delivery (CSD) is an impor‑ tant disruptive factor of this transfer. Recently, the deregulation of symbiotic host‑microbe interactions in early life has been shown to alter the maturation of the immune system, predisposing the host to gut barrier dysfunction and infammation. The main goal of this study is to decipher the role of the early‑life gut microbiota‑barrier alterations and its links with later‑life risks of intestinal infammation in a murine model of CSD. Results The higher sensitivity to chemically induced infammation in CSD mice is related to excessive exposure to a too diverse microbiota too early in life. This early microbial stimulus has short‑term consequences on the host homeo‑ stasis. It switches the pup’s immune response to an infammatory context and alters the epithelium structure and the mucus‑producing cells, disrupting gut homeostasis. This presence of a too diverse microbiota in the very early life involves a disproportionate short‑chain fatty acids ratio and an excessive antigen exposure across the vulnerable gut barrier in the frst days of life, before the gut closure. Besides, as shown by microbiota transfer experiments, the microbiota is causal in the high sensitivity of CSD mice to chemical‑induced colitis and in most of the phenotypical parameters found altered in early life. Finally, supplementation with lactobacilli, the main bacterial group impacted by CSD in mice, reverts the higher sensitivity to infammation in ex‑germ‑free mice colonized by CSD pups’ microbiota. Conclusions Early‑life gut microbiota‑host crosstalk alterations related to CSD could be the linchpin behind the phe‑ notypic efects that lead to increased susceptibility to an induced infammation later in life in mice. Keywords C‑section delivery, Microbiota, Primary colonization, Early life, Infammation, Gut barrier, Murine modelinfo:eu-repo/semantics/publishedVersio

    Gut barrier-microbiota imbalances in early life lead to higher sensitivity to inflammation in a murine model of C-section delivery

    Get PDF
    Most interactions between the host and its microbiota occur at the gut barrier, and primary colonizers are essential in the gut barrier maturation in the early life. The mother-offspring transmission of microorganisms is the most important factor influencing microbial colonization in mammals, and C-section delivery (CSD) is an important disruptive factor of this transfer. Recently, the deregulation of symbiotic host-microbe interactions in early life has been shown to alter the maturation of the immune system, predisposing the host to gut barrier dysfunction and inflammation. The main goal of this study is to decipher the role of the early-life gut microbiota-barrier alterations and its links with later-life risks of intestinal inflammation in a murine model of CSD. The higher sensitivity to chemically induced inflammation in CSD mice is related to excessive exposure to a too diverse microbiota too early in life. This early microbial stimulus has short-term consequences on the host homeostasis. It switches the pup's immune response to an inflammatory context and alters the epithelium structure and the mucus-producing cells, disrupting gut homeostasis. This presence of a too diverse microbiota in the very early life involves a disproportionate short-chain fatty acids ratio and an excessive antigen exposure across the vulnerable gut barrier in the first days of life, before the gut closure. Besides, as shown by microbiota transfer experiments, the microbiota is causal in the high sensitivity of CSD mice to chemical-induced colitis and in most of the phenotypical parameters found altered in early life. Finally, supplementation with lactobacilli, the main bacterial group impacted by CSD in mice, reverts the higher sensitivity to inflammation in ex-germ-free mice colonized by CSD pups' microbiota. Early-life gut microbiota-host crosstalk alterations related to CSD could be the linchpin behind the phenotypic effects that lead to increased susceptibility to an induced inflammation later in life in mice

    A large pseudoautosomal region on the sex chromosomes of the frog Silurana tropicalis

    Get PDF
    Sex chromosome divergence has been documented across phylogenetically diverse species, with amphibians typically having cytologically nondiverged (“homomorphic”) sex chromosomes. With an aim of further characterizing sex chromosome divergence of an amphibian, we used “RAD-tags” and Sanger sequencing to examine sex specificity and heterozygosity in theWestern clawed frog Silurana tropicalis (also known as Xenopus tropicalis). Our findings based on approximately 20 million genotype calls and approximately 200 polymerase chain reaction-amplified regions across multiple male and female genomes failed to identify a substantially sized genomic region with genotypic hallmarks of sex chromosome divergence, including in regions known to be tightly linked to the sex-determining region.Wealso foundthat expression andmolecular evolutionof genes linked to the sex-determining region did not differ substantially from genes in other parts of the genome. This suggests that the pseudoautosomal region, where recombination occurs, comprises a large portion of the sex chromosomes of S. tropicalis. These resultsmay in part explainwhy African clawed frogs have such a high incidence of polyploidization, shed light onwhy amphibians have a high rate of sex chromosome turnover, and raise questions about why homomorphic sex chromosomes are so prevalent in amphibians

    Aplicaciones PAC y PAS en biología y oncología

    Get PDF
    Aunque algunos Métodos Nucleares son frecuentemente aplicados a la Biología, este no es el caso de la técnica de Correlaciones Angulares Perturbadas (PAC) y de la Espectroscopia de Aniquilación de Positrones (PAS). Esto ocurre a pesar del poder de estas técnicas en la caracterización microscópica de diversos materiales. En la presente comunicación se describen aplicaciones de estás técnicas a problemas concernientes a la biología y oncología. Se analizan los aspectos favorables y desfavorables. Se discuten experimentos PAC a realizar para caracterizar el entorno atómico de isótopos 111In y 111Cd en portadores de radiotrazadores, radiofármacos y proteínas. También se discute la posibilidad de utilizar determinaciones PAS de vidas medias de positrones para distinguir entre distintos estadios de tumores.Several Nuclear Methods are frequently used in Biology. This is not the case of Perturbed Angular Correlations (PAC) technique and Positron Annihilation Spectroscopy (PAS). This occurs in spite of the power of these techniques in characterizing microscopically diverse materials. In the present communication applications of these techniques to problems concern to biology and oncology are described. The favorable aspects and disadvantages are analyzed. The PAC experiments to characterize the atomic environment of the isotopes 111In and 111Cd in radiotracer carriers, radiopharmaceuticals and proteins, are discussed. It is also discussed the possibility of using Positron Annihilation Lifetime Spectroscopy to distinguish between different stages of tumors.Facultad de Ciencias ExactasInstituto de Investigaciones Bioquímicas de La PlataInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans

    Get PDF
    The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid nematode genomes

    A cardinal role for cathepsin D in co-ordinating the host-mediated apoptosis of macrophages and killing of pneumococci

    Get PDF
    The bactericidal function of macrophages against pneumococci is enhanced by their apoptotic demise, which is controlled by the anti-apoptotic protein Mcl-1. Here, we show that lysosomal membrane permeabilization (LMP) and cytosolic translocation of activated cathepsin D occur prior to activation of a mitochondrial pathway of macrophage apoptosis. Pharmacological inhibition or knockout of cathepsin D during pneumococcal infection blocked macrophage apoptosis. As a result of cathepsin D activation, Mcl-1 interacted with its ubiquitin ligase Mule and expression declined. Inhibition of cathepsin D had no effect on early bacterial killing but inhibited the late phase of apoptosis-associated killing of pneumococci in vitro. Mice bearing a cathepsin D-/- hematopoietic system demonstrated reduced macrophage apoptosis in vivo, with decreased clearance of pneumococci and enhanced recruitment of neutrophils to control pulmonary infection. These findings establish an unexpected role for a cathepsin D-mediated lysosomal pathway of apoptosis in pulmonary host defense and underscore the importance of apoptosis-associated microbial killing to macrophage function
    corecore