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ABSTRACT The facultative plant pathogen Epicoccum sorghinum is associated with
grain mold of sorghum and produces the mycotoxin tenuazonic acid. This fungus
can have serious economic impact on sorghum production. Here, we report the
draft genome sequence of E. sorghinum (USPMTOX48).

Epicoccum sorghinum (Sacc.) (also known as Phoma sorghina) (1) is one of the most
important fungi in the grain-mold complex in sorghum (2). The presence of this

pathogen in sorghum results in significant economic losses due to reduced crop yields,
seed viability, and kernel weight (3). This fungus produces tenuazonic acid (TA), a
mycotoxin that produces acute toxicity to organisms and therefore prevents the
consumption of sorghum grains as food and feed (4, 5). The draft genome of this
fungus has genes involved in the TA pathway.

To begin to access the genetic mechanism of tenuazonic acid production in
E. sorghinum, we report the draft genome sequence of Epicoccum sorghinum strain
USPMTOX48, which was recovered from contaminated sorghum grains (Sorghum bi-
color [L.] Moench cv. DKB 550) cultured in Votuporanga, Brazil, in 2013. A polyphasic
approach consisting of molecular and morphological characterization was performed
for species identification (1). For sequencing analysis, genomic DNA was extracted
using the Easy-DNA kit (Invitrogen, USA) and used to generate a short-insert paired-end
library on an Illumina HiSeq 2000 instrument.

The library generated 58,194,228 reads (read lengths, 101 bp) totaling 5,878 Mbp
(176� genome coverage). Raw data underwent quality control using FaQCs, which
trimmed and filtered the reads (6, 7). The resulting data were assembled with IDBA_UD
(8) and Velvet (9). Consensus sequences of both assemblies were computationally
shredded and merged with Phrap (10, 11). The genome assembly consisted of 391
contigs (�1 kb); the estimated genome size is 33.4 Mbp, and the G�C content is 52%.

Gene annotation was carried out using the MAKER2 training and annotation pipe-
line (12). Briefly, repeated genomic regions were masked using RepeatMasker (http://
www.repeatmasker.org). Genes were then modeled by combining several gene anno-
tations methods as inputs into MAKER2, namely: (i) BLASTx alignment of proteins of a
related species, Phoma tracheiphila; (ii) Augustus (13) ab initio gene models trained on
the gene structures of the fungal Benchmarking Universal Single-Copy Orthologs
(BUSCO) (14); (iii) SNAP (15) ab initio models trained on Hidden Markov Models of the
CEGMA core eukaryotic genes (16); and (iv) Genemark-ES ab initio gene models (17).
BUSCO quality analysis of the output gene annotations resulted in a high-quality gene
annotation. The output resulted in MAKER calling a total of 9,495 genes. The average
gene length, the mean exon length, and the mean intron length were determined to
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be 1,658 bp, 574 bp, and 84 bp, respectively. Functional annotation of the 9,495 genes
was performed by InterProScan 5 (18) and BLASTp searches against the UniProt
(UniProt Consortium) protein blast database.

In agreement with the capability of E. sorghinum to produce TA, we found an
identical domain of the TA biosynthetic gene described from Magnaporthe oryzae
genome (19). TAS1 is a nonribosomal peptide synthetase (NRPS)-polyketide synthase
(PKS) hybrid enzyme with a C-A-PCP-KS domain organization. The TAS1 identified in the
E. sorghinum genome was highly conserved. This genomic information will contribute
to a better understanding of the TA biosynthetic pathways and its regulatory mecha-
nisms.

Accession number(s). The draft genome sequence of Epicoccum sorghinum
(USPMTOX48) has been deposited at DDBJ/EMBL/GenBank under the accession no.
MIEO00000000. The version described in this paper is version MIEO01000000.
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