23 research outputs found

    Varied Response of Western Pacific Hydrology to Climate Forcings over the Last Glacial Period

    Get PDF
    Atmospheric deep convection in the west Pacific plays a key role in the global heat and moisture budgets, yet its response to orbital and abrupt climate change events is poorly resolved. Here, we present four absolutely dated, overlapping stalagmite oxygen isotopic records from northern Borneo that span most of the last glacial cycle. The records suggest that northern Borneo’s hydroclimate shifted in phase with precessional forcing but was only weakly affected by glacial-interglacial changes in global climate boundary conditions. Regional convection likely decreased during Heinrich events, but other Northern Hemisphere abrupt climate change events are notably absent. The new records suggest that the deep tropical Pacific hydroclimate variability may have played an important role in shaping the global response to the largest abrupt climate change events

    Transformation of ENSO-related rainwater to dripwater δ^(18)O variability by vadose water mixing

    Get PDF
    Speleothem oxygen isotopes (δ^(18)O) are often used to reconstruct past rainfall δ^(18)O variability, and thereby hydroclimate changes, in many regions of the world. However, poor constraints on the karst hydrological processes that transform rainfall signals into cave dripwater add significant uncertainty to interpretations of speleothem-based reconstructions. Here we present several 6.5 year, biweekly dripwater δ^(18)O time series from northern Borneo and compare them to local rainfall δ^(18)O variability. We demonstrate that vadose water mixing is the primary rainfall-to-dripwater transformation process at our site, where dripwater δ^(18)O reflects amount-weighted rainfall δ^(18)O integrated over the previous 3–10 months. We document large interannual dripwater δ^(18)O variability related to the El Niño–Southern Oscillation (ENSO), with amplitudes inversely correlated to dripwater residence times. According to a simple stalagmite forward model, asymmetrical ENSO extremes produce significant offsets in stalagmite δ^(18)O time series given different dripwater residence times. Our study highlights the utility of generating multiyear, paired time series of rainfall and dripwater δ^(18)O to aid interpretations of stalagmite δ^(18)O reconstructions

    Northern Borneo stalagmite records reveal West Pacific hydroclimate across MIS 5 and 6

    Get PDF
    Over the past decades, tropical stalagmite δ^(18)O records have provided valuable insight on glacial and interglacial hydrological variability and its relationship to a variety of natural climate forcings. The transition out of the penultimate glaciation (MIS 6) represents an important target for tropical hydroclimate reconstructions, yet relatively few such reconstructions resolve this transition. Particularly, comparisons between Termination 1 and 2 provide critical insight on the extent and influence of proposed climate mechanisms determined from paleorecords and model experiments spanning the recent deglaciation. Here we present a new compilation of western tropical Pacific hydrology spanning 0–160 ky BP, constructed from eleven different U/Th-dated stalagmite δ^(18)O records from Gunung Mulu National Park in northern Borneo. The reconstruction exhibits significant precessional power in phase with boreal fall insolation strength over the 0–160 ky BP period, identifying precessional insolation forcing as the dominant driver of hydroclimate variability in northern Borneo on orbital timescales. A comparison with a network of paleoclimate records from the circum-Pacific suggests the insolation sensitivity may arise from changes in the Walker circulation system. Distinct millennial-scale increases in stalagmite δ^(18)O, indicative of reduced regional convection, occur within glacial terminations and may reflect a response to shifts in inter-hemispheric temperature gradients. Our results imply that hydroclimate in this region is sensitive to external forcing, with a response dominated by large-scale temperature gradients

    Northern Borneo stalagmite records reveal West Pacific hydroclimate across MIS 5 and 6

    Get PDF
    Over the past decades, tropical stalagmite δ18Orecords have provided valuable insight on glacial and interglacial hydrological variability and its relationship to a variety of natural climate forcings. The transition out of the penultimate glaciation (MIS 6) represents an important target for tropical hydroclimate reconstructions, yet relatively few such reconstructions resolve this transition. Particularly, comparisons between Termination1 and 2 provide critical insight on the extent and influence of proposed climate mechanisms determined from paleorecords and model experiments spanning the recent deglaciation. Here we present a new compilation of western tropical Pacific hydrology spanning 0–160kyBP, constructed from eleven different U/Th-dated stalagmite δ18Orecords from Gunung Mulu National Park in northern Borneo. The reconstruction exhibits significant precessional power in phase with boreal fall insolation strength over the 0–160kyBP period, identifying precessional insolation forcing as the dominant driver of hydroclimate variability in northern Borneo on orbital timescales. A comparison with a network of paleoclimate records from the circum-Pacific suggests the insolation sensitivity may arise from changes in the Walker circulation system. Distinct millennial-scale increases in stalagmite δ18O, indicative of reduced regional convection, occur within glacial terminations and may reflect a response to shifts in inter-hemispheric temperature gradients. Our results imply that hydroclimate in this region is sensitive to external forcing, with a response dominated by large-scale temperature gradients. . , , , , , , , , , ,

    Transformation of ENSO‐related rainwater to dripwater δ18O variability by vadose water mixing

    Get PDF
    Speleothem oxygen isotopes (δ18O) are often used to reconstruct past rainfall δ18O variability, and thereby hydroclimate changes, in many regions of the world. However, poor constraints on the karst hydrological processes that transform rainfall signals into cave dripwater add significant uncertainty to interpretations of speleothem-based reconstructions. Here we present several 6.5 year, biweekly dripwater δ18O time series from northern Borneo and compare them to local rainfall δ18O variability. We demonstrate that vadose water mixing is the primary rainfall-to-dripwater transformation process at our site, where dripwater δ18O reflects amount-weighted rainfall δ18O integrated over the previous 3–10 months. We document large interannual dripwater δ18O variability related to the El Niño–Southern Oscillation (ENSO), with amplitudes inversely correlated to dripwater residence times. According to a simple stalagmite forward model, asymmetrical ENSO extremes produce significant offsets in stalagmite δ18O time series given different dripwater residence times. Our study highlights the utility of generating multiyear, paired time series of rainfall and dripwater δ18O to aid interpretations of stalagmite δ18O reconstructions

    The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems

    Get PDF
    Stable isotope records from speleothems provide information on past climate changes, most particularly information that can be used to reconstruct past changes in precipitation and atmospheric circulation. These records are increasingly being used to provide “out-of-sample” evaluations of isotope-enabled climate models. SISAL (Speleothem Isotope Synthesis and Analysis) is an international working group of the Past Global Changes (PAGES) project. The working group aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation. The SISAL database contains data for individual speleothems, grouped by cave system. Stable isotopes of oxygen and carbon (δ 18O, δ 13C) measurements are referenced by distance from the top or bottom of the speleothem. Additional tables provide information on dating, including information on the dates used to construct the original age model and sufficient information to assess the quality of each data set and to erect a standardized chronology across different speleothems. The metadata table provides location information, information on the full range of measurements carried out on each speleothem and information on the cave system that is relevant to the interpretation of the records, as well as citations for both publications and archived data. The compiled data are available at https://doi.org/10.17864/1947.147

    Evaluating model outputs using integrated global speleothem records of climate change since the last glacial

    Get PDF
    Although quantitative isotopic data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to use the speleothem data for data-model comparisons. Here, we illustrate this using 456 globally-distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates procuring large numbers of records if data-model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotopic values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model’s ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotopic data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on 18O values, the optimum period for the modern observational baseline, and the selection of an appropriate time-window for creating means of the isotope data for palaeo time slices

    Measured isotope activity ratios, calculated ages and monte-carlo derived age error, and Oxcal deposition model U-Th ages and associated age error of the stalagmite SIB-4 from Sibaki Cave, Southwestern Iran

    No full text
    A total of 32 230Th ages were measured along the growth axis of SIB-4 stalagmite. 100-200 mg of calcite powder was drilled per sample in a laminar-flow hood following growth lamina. The samples were chemically prepared at the Department of Earth Sciences, University of Oxford. The samples were spiked with a mixed 229Th-236U spike, dissolved in HNO3 and refluxed on a hot-plate overnight for spike-sample equilibration. Chemical separation of U and Th was done following procedures adapted from Edwards et al. (1987). The separated U and Th fractions were analysed on a Nu Plasma multi-collector inductively coupled plasma mass spectrometer, following the procedure described in Carolin et al. (2019). Individual 230Th ages with their 95% confidence intervals were calculated using an in-house Monte Carlo script that incorporates chemical blank errors, analytical uncertainties and initial 230Th/232Th uncertainties. The initial 230Th/232Th (atomic ratio) is estimated to be between 0.5 to 10.8 ppm (uniform distribution), equivalent to an activity ratio of 0.1 to 2.0. This range encompasses both the bulk earth value (230Th/232Th activity = 0.82) and the median detritus value calculated in a collection of speleothem studies (230Th/232Th activity = 1.5) (Hellstrom, 2006). Notably, SIB-4 samples exhibit large 230Th/232Th, with 90% of samples showing 230Th/232Th activity greater than 1000. This is due to high U content and low detrital Th content of the stalagmite. Thus, the age corrections related to detrital contamination are small (median of just 4 years), which is much less than the overall age error of ca. 100 years (2s)

    Oxcal input used to create an age model of the stalagmite SIB-4 from Sibaki Cave, Southwestern Iran

    No full text
    An interpolated age model with 68% and 95% confidence ranges was produced using OxCal version 4.4 (doi:10.1594/PANGAEA.955839). The age model uses a Poisson process deposition model, with stalagmite vertical growth rate constrained using model inputs k0= 0.1 mm-1 and log10(k/k0) = U (-2, 2) (Bronk Ramsey, 2008, 2009; Bronk Ramsey and Lee, 2013)
    corecore