69 research outputs found

    Web-based patient-reported outcome measures for personalized treatment and care (PROMPT-Care) : multicenter pragmatic nonrandomized trial

    Get PDF
    Background: Despite the acceptability and efficacy of e–patient-reported outcome (ePRO) systems, implementation in routine clinical care remains challenging. Objective: This pragmatic trial implemented the PROMPT-Care (Patient Reported Outcome Measures for Personalized Treatment and Care) web-based system into existing clinical workflows and evaluated its effectiveness among a diverse population of patients with cancer. Methods: Adult patients with solid tumors receiving active treatment or follow-up care in four cancer centers were enrolled. The PROMPT-Care intervention supported patient management through (1) monthly off-site electronic PRO physical symptom and psychosocial well-being assessments, (2) automated electronic clinical alerts notifying the care team of unresolved clinical issues following two consecutive assessments, and (3) tailored online patient self-management resources. Propensity score matching was used to match controls with intervention patients in a 4:1 ratio for patient age, sex, and treatment status. The primary outcome was a reduction in emergency department presentations. Secondary outcomes were time spent on chemotherapy and the number of allied health service referrals. Results: From April 2016 to October 2018, 328 patients from four public hospitals received the intervention. Matched controls (n=1312) comprised the general population of patients with cancer, seen at the participating hospitals during the study period. Emergency department visits were significantly reduced by 33% (P=.02) among patients receiving the intervention compared with patients in the matched controls. No significant associations were found in allied health referrals or time to end of chemotherapy. At baseline, the most common patient reported outcomes (above-threshold) were fatigue (39%), tiredness (38.4%), worry (32.9%), general wellbeing (32.9%), and sleep (24.1%), aligning with the most frequently accessed self-management domain pages of physical well-being (36%) and emotional well-being (23%). The majority of clinical feedback reports were reviewed by nursing staff (729/893, 82%), largely in response to the automated clinical alerts (n=877). Conclusions: Algorithm-supported web-based systems utilizing patient reported outcomes in clinical practice reduced emergency department presentations among a diverse population of patients with cancer. This study also highlighted the importance of (1) automated triggers for reviewing above-threshold results in patient reports, rather than passive manual review of patient records; (2) the instrumental role nurses play in managing alerts; and (3) providing patients with resources to support guided self-management, where appropriate. Together, these factors will inform the integration of web-based PRO systems into future models of routine cancer care

    Genome-wide gene expression profiling identifies overlap with malignant adrenocortical tumours and novel mechanisms of inefficient steroidogenesis in familial ACTH-independent macronodular adrenal hyperplasia.

    Get PDF
    ACTH-independent macronodular adrenal hyperplasia (AIMAH) is a rare cause of sporadic or familial late-onset Cushing's syndrome. It is a cytologically benign disease, of unknown pathogenesis, and characterised by inefficient steroidogenesis, ascribed to differential cellular localisation of steroidogenic enzymes. The objectives were to determine the molecular mechanisms involved in the pathogenesis of familial AIMAH tumours and the mechanisms of their inefficient steroidogenesis. Using Affymetrix Human GeneChip® HumanGene 1.0 ST arrays, we compared the genome-wide gene expression profile of two AIMAH nodules from each of three affected siblings with normal adrenal cortex and analysed the data for differential expression and using Ingenuity Pathway Analysis, Gene Set Enrichment Analysis and Motif Activity Response Analysis. Expression profiling identified: (i) that amongst the most highly differentially expressed genes were ones known to have involvement in tumorigenesis and metastasis; (ii) enrichment for differentially expressed genes in sporadic AIMAH and other benign and malignant adrenocortical tumours and (iii) reduced activity of key transcriptional regulators (Steroidogenic factor-1, SF-1 and transcription factor Sp1, Sp1) of steroidogenic enzymes. Genome-wide gene expression studies of familial AIMAH nodules have identified overlap with malignant adrenocortical tumours, which is intriguing given the benign biological behaviour of these tumours. This requires further study. Novel mechanisms of inefficient steroidogenesis were also identified

    Polyamine functionalised ion exchange resins: Synthesis, characterisation and uranyl uptake

    Get PDF
    A series of linear polyamine functionalised weak base anion exchange resins have been synthesised using the Merrifield resin and characterised using infra-red spectroscopy, thermogravimetry, elemental analysis and solid state 13 C nuclear magnetic resonance spectroscopy. Uptake behaviour towards uranium (as uranyl) from sulfuric acid media has been assessed as a function of pH and sulfate concentration, with comparison to a commercially available weak base anion exchange resin, Purolite S985. Synthetic polyamine resins were seen to outperform the commercial resin at industrially relevant uranyl concentrations, with a trend of increased uptake being seen with increasing polyamine chain length. Uranium loading isotherm studies have been performed and fit with the Langmuir and Dubinin-Radushkevich isotherm models, with a maximum loading capacity observed being 269.50 mg g −1 for the longest polyamine chain studied. Extended X-ray absorption fine structure experiments have been used to determine uranium coordination environment on the resin surface, showing a [UO 2 (SO 4 ) 3 ] 4− species. This coordination knowledge was employed to develop an extraction mechanism and derive an isotherm model based on the law of mass action

    Association Between Advanced Maternal Age and Maternal and Neonatal Morbidity: A Cross-Sectional Study on a Spanish Population

    Get PDF
    Background and objective: Over recent decades, a progressive increase in the maternal age at childbirth has been observed in developed countries, posing a health risk for both women and infants. The aim of this study was to analyze the association between advanced maternal age (AMA) and maternal and neonatal morbidity. Material and methods: A cross-sectional study of 3,315 births was conducted in the north of Spain in 2014. We compared childbirth between women aged 35 years or older, with a reference group of women aged between 24 and 27 years. AMA was categorized based on ordinal ranking into 35-38 years, 39-42 years, and >42 years to estimate a dose-response pattern (the older the age, the greater the risk). As an association measure, crude and adjusted Odds Ratios (OR) were estimated by non-conditional logistic regression and 95% Confidence Intervals (95%CI) were calculated. Results: Repeated abortions were more common among women of AMA in comparison to pregnant women aged 24-27 years (reference group): adjusted OR = 2.68; 95%CI (1.52-4.73). A higher prevalence of gestational diabetes was also observed among women of AMA, reaching statistical significance when restricted to first time mothers: adjusted OR = 8.55; 95%CI (1.12-65.43). In addition, the possibility of an instrumental delivery was multiplied by 1.6 and the possibility of a cesarean by 1.5 among women of AMA, with these results reaching statistical significance, and observing a dose-response pattern. Lastly, there were associations between preeclampsia, preterm birth (<37 weeks) and low birthweight, however without reaching statistical significance. Conclusion: Our results support the association between AMA and suffering repeated abortions. Likewise, being of AMA was associated with a greater risk of suffering from gestational diabetes, especially among primiparous women, as well as being associated with both instrumental deliveries and cesareans among both primiparous and multiparous women

    Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009

    Full text link
    This critical review is focused on examples reported in the year 2009 dealing with the design of chromogenic and fluorogenic chemosensors or reagents for anions (264 references). © 2011 The Royal Society of Chemistry.Moragues Pons, ME.; Martínez Mañez, R.; Sancenón Galarza, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews. 40(5):2593-2643. doi:10.1039/c0cs00015aS25932643405Schmidtchen, F. P., Gleich, A., & Schummer, A. (1989). Selective molecular hosts for anions. Pure and Applied Chemistry, 61(9), 1535-1546. doi:10.1351/pac198961091535Dietrich, B. (1993). Design of anion receptors: Applications. Pure and Applied Chemistry, 65(7), 1457-1464. doi:10.1351/pac199365071457Atwood, J. L., Holman, K. T., & Steed, J. W. (1996). Laying traps for elusive prey: recent advances in the non-covalent binding of anions. Chemical Communications, (12), 1401. doi:10.1039/cc9960001401Schmidtchen, F. P., & Berger, M. (1997). Artificial Organic Host Molecules for Anions. Chemical Reviews, 97(5), 1609-1646. doi:10.1021/cr9603845Antonisse, M. M. G., & Reinhoudt, D. N. (1998). Neutral anion receptors: design and application. Chemical Communications, (4), 443-448. doi:10.1039/a707529dGale, P. (2000). Anion coordination and anion-directed assembly: highlights from 1997 and 1998. Coordination Chemistry Reviews, 199(1), 181-233. doi:10.1016/s0010-8545(99)00149-6Gale, P. A. (2001). Anion receptor chemistry: highlights from 1999. Coordination Chemistry Reviews, 213(1), 79-128. doi:10.1016/s0010-8545(00)00364-7Gale, P. A. (2003). Anion and ion-pair receptor chemistry: highlights from 2000 and 2001. Coordination Chemistry Reviews, 240(1-2), 191-221. doi:10.1016/s0010-8545(02)00258-8Gale, P. A., & Quesada, R. (2006). Anion coordination and anion-templated assembly: Highlights from 2002 to 2004. Coordination Chemistry Reviews, 250(23-24), 3219-3244. doi:10.1016/j.ccr.2006.05.020Gale, P. A., García-Garrido, S. E., & Garric, J. (2008). Anion receptors based on organic frameworks: highlights from 2005 and 2006. Chem. Soc. Rev., 37(1), 151-190. doi:10.1039/b715825dCaltagirone, C., & Gale, P. A. (2009). Anion receptor chemistry: highlights from 2007. Chem. Soc. Rev., 38(2), 520-563. doi:10.1039/b806422aKubik, S. (2009). Amino acid containing anion receptors. Chem. Soc. Rev., 38(2), 585-605. doi:10.1039/b810531fSchmidtchen, F. P. (2005). Artificial Host Molecules for the Sensing of Anions. Anion Sensing, 1-29. doi:10.1007/b101160Schmidtchen, F. P. (2006). Reflections on the construction of anion receptors. Coordination Chemistry Reviews, 250(23-24), 2918-2928. doi:10.1016/j.ccr.2006.07.009Gale, P. A. (2006). Structural and Molecular Recognition Studies with Acyclic Anion Receptors†. Accounts of Chemical Research, 39(7), 465-475. doi:10.1021/ar040237qSessler, J. L., Camiolo, S., & Gale, P. A. (2003). Pyrrolic and polypyrrolic anion binding agents. Coordination Chemistry Reviews, 240(1-2), 17-55. doi:10.1016/s0010-8545(03)00023-7Bondy, C. R., & Loeb, S. J. (2003). Amide based receptors for anions. Coordination Chemistry Reviews, 240(1-2), 77-99. doi:10.1016/s0010-8545(02)00304-1Choi, K., & Hamilton, A. D. (2003). Macrocyclic anion receptors based on directed hydrogen bonding interactions. Coordination Chemistry Reviews, 240(1-2), 101-110. doi:10.1016/s0010-8545(02)00305-3Davis, A. P. (2006). Anion binding and transport by steroid-based receptors. Coordination Chemistry Reviews, 250(23-24), 2939-2951. doi:10.1016/j.ccr.2006.05.008Best, M. D., Tobey, S. L., & Anslyn, E. V. (2003). Abiotic guanidinium containing receptors for anionic species. Coordination Chemistry Reviews, 240(1-2), 3-15. doi:10.1016/s0010-8545(02)00256-4Llinares, J. M., Powell, D., & Bowman-James, K. (2003). Ammonium based anion receptors. Coordination Chemistry Reviews, 240(1-2), 57-75. doi:10.1016/s0010-8545(03)00019-5Schug, K. A., & Lindner, W. (2005). Noncovalent Binding between Guanidinium and Anionic Groups:  Focus on Biological- and Synthetic-Based Arginine/Guanidinium Interactions with Phosph[on]ate and Sulf[on]ate Residues. Chemical Reviews, 105(1), 67-114. doi:10.1021/cr040603jYoon, J., Kim, S. K., Singh, N. J., & Kim, K. S. (2006). Imidazolium receptors for the recognition of anions. Chemical Society Reviews, 35(4), 355. doi:10.1039/b513733kBlondeau, P., Segura, M., Pérez-Fernández, R., & de Mendoza, J. (2007). Molecular recognition of oxoanions based on guanidinium receptors. Chem. Soc. Rev., 36(2), 198-210. doi:10.1039/b603089kXu, Z., Kim, S. K., & Yoon, J. (2010). Revisit to imidazolium receptors for the recognition of anions: highlighted research during 2006–2009. Chemical Society Reviews, 39(5), 1457. doi:10.1039/b918937hGarcía-España, E., Díaz, P., Llinares, J. M., & Bianchi, A. (2006). Anion coordination chemistry in aqueous solution of polyammonium receptors. Coordination Chemistry Reviews, 250(23-24), 2952-2986. doi:10.1016/j.ccr.2006.05.018Schmuck, C. (2006). How to improve guanidinium cations for oxoanion binding in aqueous solution? Coordination Chemistry Reviews, 250(23-24), 3053-3067. doi:10.1016/j.ccr.2006.04.001Amendola, V. (2001). Anion recognition by dimetallic cryptates. Coordination Chemistry Reviews, 219-221, 821-837. doi:10.1016/s0010-8545(01)00368-xBeer, P. D., & Hayes, E. J. (2003). Transition metal and organometallic anion complexation agents. Coordination Chemistry Reviews, 240(1-2), 167-189. doi:10.1016/s0010-8545(02)00303-xSteed, J. W. (2009). Coordination and organometallic compounds as anion receptors and sensors. Chem. Soc. Rev., 38(2), 506-519. doi:10.1039/b810364jO’Neil, E. J., & Smith, B. D. (2006). Anion recognition using dimetallic coordination complexes. Coordination Chemistry Reviews, 250(23-24), 3068-3080. doi:10.1016/j.ccr.2006.04.006Rice, C. R. (2006). Metal-assembled anion receptors. Coordination Chemistry Reviews, 250(23-24), 3190-3199. doi:10.1016/j.ccr.2006.05.017Amendola, V., & Fabbrizzi, L. (2009). Anion receptors that contain metals as structural units. Chem. Commun., (5), 513-531. doi:10.1039/b808264mMartínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421eKatayev, E. A., Ustynyuk, Y. A., & Sessler, J. L. (2006). Receptors for tetrahedral oxyanions. Coordination Chemistry Reviews, 250(23-24), 3004-3037. doi:10.1016/j.ccr.2006.04.013Suksai, C., & Tuntulani, T. (2003). Chromogenic anion sensors. Chemical Society Reviews, 32(4), 192. doi:10.1039/b209598jKim, S. K., Lee, D. H., Hong, J.-I., & Yoon, J. (2009). Chemosensors for Pyrophosphate. Accounts of Chemical Research, 42(1), 23-31. doi:10.1021/ar800003fBeer, P. (2000). Electrochemical and optical sensing of anions by transition metal based receptors. Coordination Chemistry Reviews, 205(1), 131-155. doi:10.1016/s0010-8545(00)00237-xBeer, P. D. (1996). Anion selective recognition and optical/electrochemical sensing by novel transition-metal receptor systems. Chemical Communications, (6), 689. doi:10.1039/cc9960000689De Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., & Rice, T. E. (1997). Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews, 97(5), 1515-1566. doi:10.1021/cr960386pGunnlaugsson, T., Glynn, M., Tocci (née Hussey), G. M., Kruger, P. E., & Pfeffer, F. M. (2006). Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coordination Chemistry Reviews, 250(23-24), 3094-3117. doi:10.1016/j.ccr.2006.08.017Amendola, V., Esteban-Gómez, D., Fabbrizzi, L., & Licchelli, M. (2006). What Anions Do to N−H-Containing Receptors. Accounts of Chemical Research, 39(5), 343-353. doi:10.1021/ar050195lGunnlaugsson, T., Ali, H. D. P., Glynn, M., Kruger, P. E., Hussey, G. M., Pfeffer, F. M., … Tierney, J. (2005). Fluorescent Photoinduced Electron Transfer (PET) Sensors for Anions; From Design to Potential Application. Journal of Fluorescence, 15(3), 287-299. doi:10.1007/s10895-005-2627-yWiskur, S. L., Ait-Haddou, H., Lavigne, J. J., & Anslyn, E. V. (2001). Teaching Old Indicators New Tricks. Accounts of Chemical Research, 34(12), 963-972. doi:10.1021/ar9600796Nguyen, B. T., & Anslyn, E. V. (2006). Indicator–displacement assays. Coordination Chemistry Reviews, 250(23-24), 3118-3127. doi:10.1016/j.ccr.2006.04.009Xu, Z., Chen, X., Kim, H. N., & Yoon, J. (2010). Sensors for the optical detection ofcyanide ion. Chem. Soc. Rev., 39(1), 127-137. doi:10.1039/b907368jMartínez-Máñez, R., & Sancenón, F. (2005). New Advances in Fluorogenic Anion Chemosensors. Journal of Fluorescence, 15(3), 267-285. doi:10.1007/s10895-005-2626-zHijji, Y. M., Barare, B., Kennedy, A. P., & Butcher, R. (2009). Synthesis and photophysical characterization of a Schiff base as anion sensor. Sensors and Actuators B: Chemical, 136(2), 297-302. doi:10.1016/j.snb.2008.11.045Zhang, Y.-M., Lin, Q., Wei, T.-B., Wang, D.-D., Yao, H., & Wang, Y.-L. (2009). Simple colorimetric sensors with high selectivity for acetate and chloride in aqueous solution. Sensors and Actuators B: Chemical, 137(2), 447-455. doi:10.1016/j.snb.2009.01.015Anzenbacher, P., Nishiyabu, R., & Palacios, M. A. (2006). N-confused calix[4]pyrroles. Coordination Chemistry Reviews, 250(23-24), 2929-2938. doi:10.1016/j.ccr.2006.09.001Anzenbacher,, P., Try, A. C., Miyaji, H., Jursíková, K., Lynch, V. M., Marquez, M., & Sessler, J. L. (2000). Fluorinated Calix[4]pyrrole and Dipyrrolylquinoxaline:  Neutral Anion Receptors with Augmented Affinities and Enhanced Selectivities. Journal of the American Chemical Society, 122(42), 10268-10272. doi:10.1021/ja002112wBlack, C. B., Andrioletti, B., Try, A. C., Ruiperez, C., & Sessler, J. L. (1999). Dipyrrolylquinoxalines:  Efficient Sensors for Fluoride Anion in Organic Solution. Journal of the American Chemical Society, 121(44), 10438-10439. doi:10.1021/ja992579aMizuno, T., Wei, W.-H., Eller, L. R., & Sessler, J. L. (2002). Phenanthroline Complexes Bearing Fused Dipyrrolylquinoxaline Anion Recognition Sites:  Efficient Fluoride Anion Receptors. Journal of the American Chemical Society, 124(7), 1134-1135. doi:10.1021/ja017298tMaeda, H., & Kusunose, Y. (2005). Dipyrrolyldiketone Difluoroboron Complexes: Novel Anion Sensors With C-H⋅⋅⋅X− Interactions. Chemistry - A European Journal, 11(19), 5661-5666. doi:10.1002/chem.200500627Ghosh, T., Maiya, B. G., & Samanta, A. (2006). A colorimetric chemosensor for both fluoride and transition metal ions based on dipyrrolyl derivative. Dalton Transactions, (6), 795. doi:10.1039/b510469fAldakov, D., & Anzenbacher, P. (2004). Sensing of Aqueous Phosphates by Polymers with Dual Modes of Signal Transduction. Journal of the American Chemical Society, 126(15), 4752-4753. doi:10.1021/ja039934oSessler, J. L., Cho, D.-G., & Lynch, V. (2006). Diindolylquinoxalines:  Effective Indole-Based Receptors for Phosphate Anion. Journal of the American Chemical Society, 128(51), 16518-16519. doi:10.1021/ja067720bChauhan, S. M. S., Bisht, T., & Garg, B. (2009). 1-Arylazo-5,5-dimethyl dipyrromethanes: Versatile chromogenic probes for anions. Sensors and Actuators B: Chemical, 141(1), 116-123. doi:10.1016/j.snb.2009.06.013Liu, W.-X., Yang, R., Li, A.-F., Li, Z., Gao, Y.-F., Luo, X.-X., … Jiang, Y.-B. (2009). N-(Acetamido)thiourea based simple neutral hydrogen-bonding receptors for anions. Organic & Biomolecular Chemistry, 7(19), 4021. doi:10.1039/b910255hBabu, J. N., Bhalla, V., Kumar, M., Puri, R. K., & Mahajan, R. K. (2009). Chloride ion recognition using thiourea/urea based receptors incorporated into 1,3-disubstituted calix[4]arenes. New Journal of Chemistry, 33(3), 675. doi:10.1039/b816610bBoiocchi, M., Fabbrizzi, L., Garolfi, M., Licchelli, M., Mosca, L., & Zanini, C. (2009). Templated Synthesis of Copper(II) Azacyclam Complexes Using Urea as a Locking Fragment and Their Metal-Enhanced Binding Tendencies towards Anions. Chemistry - A European Journal, 15(42), 11288-11297. doi:10.1002/chem.200901364Lin, Y.-S., Tu, G.-M., Lin, C.-Y., Chang, Y.-T., & Yen, Y.-P. (2009). Colorimetric anion chemosensors based on anthraquinone: naked-eye detection of isomeric dicarboxylate and tricarboxylate anions. New Journal of Chemistry, 33(4), 860. doi:10.1039/b811172cQing, G.-Y., Sun, T.-L., Wang, F., He, Y.-B., & Yang, X. (2009). Chromogenic Chemosensors forN-Acetylaspartate Based on Chiral Ferrocene-Bearing Thiourea Derivatives. European Journal of Organic Chemistry, 2009(6), 841-849. doi:10.1002/ejoc.200800961Lu, Q.-S., Dong, L., Zhang, J., Li, J., Jiang, L., Huang, Y., … Yu, X.-Q. (2009). Imidazolium-Functionalized BINOL as a Multifunctional Receptor for Chromogenic and Chiral Anion Recognition. Organic Letters, 11(3), 669-672. doi:10.1021/ol8027303Bao, X., Yu, J., & Zhou, Y. (2009). Selective colorimetric sensing for F− by a cleft-shaped anion receptor containing amide and hydroxyl as recognition units. Sensors and Actuators B: Chemical, 140(2), 467-472. doi:10.1016/j.snb.2009.04.056Bhardwaj, V. K., Hundal, M. S., & Hundal, G. (2009). A tripodal receptor bearing catechol groups for the chromogenic sensing of F− ions via frozen proton transfer. Tetrahedron, 65(41), 8556-8562. doi:10.1016/j.tet.2009.08.023Caltagirone, C., Mulas, A., Isaia, F., Lippolis, V., Gale, P. A., & Light, M. E. (2009). Metal-induced pre-organisation for anion recognition in a neutral platinum-containing receptor. Chemical Communications, (41), 6279. doi:10.1039/b912942aShiraishi, Y., Maehara, H., Sugii, T., Wang, D., & Hirai, T. (2009). A BODIPY–indole conjugate as a colorimetric and fluorometric probe for selective fluoride anion detection. Tetrahedron Letters, 50(29), 4293-4296. doi:10.1016/j.tetlet.2009.05.018Shiraishi, Y., Maehara, H., & Hirai, T. (2009). Indole-azadiene conjugate as a colorimetric and fluorometric probe for selective fluoride ion sensing. Organic & Biomolecular Chemistry, 7(10), 2072. doi:10.1039/b821466bBhosale, S. V., Bhosale, S. V., Kalyankar, M. B., & Langford, S. J. (2009). A Core-Substituted Naphthalene Diimide Fluoride Sensor. Organic Letters, 11(23), 5418-5421. doi:10.1021/ol9022722Lin, Z., Chen, H. C., Sun, S.-S., Hsu, C.-P., & Chow, T. J. (2009). Bifunctional maleimide dyes as selective anion sensors. Tetrahedron, 65(27), 5216-5221. doi:10.1016/j.tet.2009.04.090Yoo, J., Kim, M.-S., Hong, S.-J., Sessler, J. L., & Lee, C.-H. (2009). Selective Sensing of Anions with Calix[4]pyrroles Strapped with Chromogenic Dipyrrolylquinoxalines. The Journal of Organic Chemistry, 74(3), 1065-1069. doi:10.1021/jo802059cShang, X.-F., Li, J., Lin, H., Jiang, P., Cai, Z.-S., & Lin, H.-K. (2009). Anion recognition and sensing of ruthenium(ii) and cobalt(ii) sulfonamido complexes. Dalton Transactions, (12), 2096. doi:10.1039/b804445gDydio, P., Zieliński, T., & Jurczak, J. (2009). Bishydrazide Derivatives of Isoindoline as Simple Anion Receptors. The Journal of Organic Chemistry, 74(4), 1525-1530. doi:10.1021/jo802288uZimmermann-Dimer, L. M., Reis, D. C., Machado, C., & Machado, V. G. (2009). Chromogenic anionic chemosensors based on protonated merocyanine solvatochromic dyes in trichloromethane and in trichloromethane–water biphasic system. Tetrahedron, 65(21), 4239-4248. doi:10.1016/j.tet.2009.03.049Goswami, S., Hazra, A., Chakrabarty, R., & Fun, H.-K. (2009). Recognition of Carboxylate Anions and Carboxylic Acids by Selenium-Based New Chromogenic Fluorescent Sensor: A Remarkable Fluorescence Enhancement of Hindered Carboxylates. Organic Letters, 11(19), 4350-4353. doi:10.1021/ol901737sBarnard, A., Dickson, S. J., Paterson, M. J., Todd, A. M., & Steed, J. W. (2009). Enantioselective lactate binding by chiral tripodal anion hosts derived from amino acids. Organic & Biomolecular Chemistry, 7(8), 1554. doi:10.1039/b817889eHung, C.-Y., Singh, A. S., Chen, C.-W., Wen, Y.-S., & Sun, S.-S. (2009). Colorimetric and luminescent sensing of F− anion through strong anion–π interaction inside the π-acidic cavity of a pyridyl-triazine bridged trinuclear Re(i)–tricarbonyl diimine complex. Chemical Communications, (12), 1511. doi:10.1039/b820234fMetzger, A., & Anslyn, E. V. (1998). A Chemosensor for Citrate in Beverages. Angewandte Chemie International Edition, 37(5), 649-652. doi:10.1002/(sici)1521-3773(19980316)37:53.0.co;2-hNiikura, K., Metzger, A., & Anslyn, E. V. (1998). Chemosensor Ensemble with Selectivity for Inositol-Trisphosphate. Journal of the American Chemical Society, 120(33), 8533-8534. doi:10.1021/ja980990cAït-Haddou, H., Wiskur, S. L., Lynch, V. M., & Anslyn, E. V. (2001). Achieving Large Color Changes in Response to the Presence of Amino Acids:  A Molecular Sensing Ensemble with Selectivity for Aspartate. Journal of the American Chemical Society, 123(45), 11296-11297. doi:10.1021/ja011905vWiskur, S. L., & Anslyn, E. V. (2001). Using a Synthetic Receptor to Create an Optical-Sensing Ensemble for a Class of Analytes:  A Colorimetric Assay for the Aging of Scotch. Journal of the American Chemical Society, 123(41), 10109-10110. doi:10.1021/ja011800sZhong, Z., & Anslyn, E. V. (2002). A Colorimetric Sensing Ensemble for Heparin. Journal of the American Chemical Society, 124(31), 9014-9015. doi:10.1021/ja020505kLavigne, J. J., & Anslyn, E. V. (1999). Teaching Old Indicators New Tricks: A Colorimetric Chemosensing Ensemble for Tartrate/Malate in Beverages. Angewandte Chemie International Edition, 38(24), 3666-3669. doi:10.1002/(sici)1521-3773(19991216)38:243.0.co;2-eWiskur, S. L., Floriano, P. N., Anslyn, E. V., & McDevitt, J. T. (2003). A Multicomponent Sensing Ensemble in Solution: Differentiation between Structurally Similar Analytes. Angewandte Chemie International Edition, 42(18), 2070-2072. doi:10.1002/anie.200351058Fabbrizzi, L., Marcotte, N., Stomeo, F., & Taglietti, A. (2002). Pyrophosphate Detection in Water by Fluorescence Competition Assays: Inducing Selectivity through the Choice of the Indicator. Angewandte Chemie International Edition, 41(20), 3811-3814. doi:10.1002/1521-3773(20021018)41:203.0.co;2-wHortalá, M. A., Fabbrizzi, L., Marcotte, N., Stomeo, F., & Taglietti, A. (2003). Designing the Selectivity of the Fluorescent Detection of Amino Acids:  A Chemosensing Ensemble for Histidine. Journal of the American Chemical Society, 125(1), 20-21. doi:10.1021/ja027110lFabbrizzi, L., Leone, A., & Taglietti, A. (2001). A Chemosensing Ensemble for Selective Carbonate Detection in Water Based on Metal-Ligand Interactions. Angewandte Chemie International Edition, 40(16), 3066-3069. doi:10.1002/1521-3773(20010817)40:163.0.co;2-0Kim, S. Y., & Hong, J.-I. (2009). Dual signal (color change and fluorescence ON–OFF) ensemble system based on bis(Dpa-CuII) complex for detection of PPi in water. Tetrahedron Letters, 50(17), 1951-1953. doi:10.1016/j.tetlet.2009.02.036Khatua, S., Kim, K., Kang, J., Huh, J. O., Hong, C. S., & Churchill, D. G. (2009). Synthesis, Structure, Magnetic Properties and Aqueous Optical Citrate Detection of Chiral Dinuclear CuIIComplexes. European Journal of Inorganic Chemistry, 2009(22), 3266-3274. doi:10.1002/ejic.200900357Wright, A. T., & Anslyn, E. V. (2006). Differential receptor arrays and assays for solution-based molecular recognition. Chem. Soc. Rev., 35(1), 14-28. doi:10.1039/b505518kKitamura, M., Shabbir, S. H., & Anslyn, E. V. (2009). Guidelines for Pattern Recognition Using Differential Receptors and Indicator Displacement Assays. The Journal of Organic Chemistry, 74(12), 4479-4489. doi:10.1021/jo900433jZhang, T., Edwards, N. Y., Bonizzoni, M., & Anslyn, E. V. (2009). The Use of Differential Receptors to Pattern Peptide Phosphorylation. Journal of the American Chemical Society, 131(33), 11976-11984. doi:10.1021/ja9041675Zhang, D. (2009). Highly selective colorimetric detection of cysteine and homocysteine in water through a direct displacement approach. Inorganic Chemistry Communications, 12(12), 1255-1258. doi:10.1016/j.inoche.2009.09.035Li, S., Zhou, Y., Yu, C., Chen, F., & Xu, J. (2009). Switching the ligand-exchange reactivities of chloro-bridged cyclopalladated azobenzenes for the colorimetric sensing of thiocyanate. New Journal of Chemistry, 33(7), 1462. doi:10.1039/b903752gMännel-Croisé, C., & Zelder, F. (2009). Side Chains of Cobalt Corrinoids Control the Sensitivity and Selectivity in the Colorimetric Detection of Cyanide. Inorganic Chemistry, 48(4), 1272-1274. doi:10.1021/ic900053hMullen, K. M., Davis, J. J., & Beer, P. D. (2009). Anion induced displacement studies in naphthalene diimide containing interpenetrated and interlocked structures. New Journal of Chemistry, 33(4), 769. doi:10.1039/b819322cSancenón, F., Martínez-Máñez, R., Miranda, M. A., Seguí, M.-J., & Soto, J. (2003). Towards the Development of Colorimetric Probes to Discriminate between Isomeric Dicarboxylates. Angewandte Chemie International Edition, 42(6), 647-650. doi:10.1002/anie.200390178Jiménez, D., Martínez-Máñez, R., Sancenón, F., Ros-Lis, J. V., Benito, A., & Soto, J. (2003). A New Chromo-chemodosimeter Selective for Sulfide Anion. Journal of the American Chemical Society, 125(30), 9000-9001. doi:10.1021/ja0347336Solé, S., & Gabbaï, F. P. (2004). A bidentate borane as colorimetric fluoride ion sensor. Chem. Commun., (11), 1284-1285. doi:10.1039/b403596hWang, W., Escobedo, J. O., Lawrence, C. M., & Strongin, R. M. (2004). Direct Detection of Homocysteine. Journal of the American Chemical Society, 126(11), 3400-3401. doi:10.1021/ja0318838Zhang, M., Yu, M., Li, F., Zhu, M., Li, M., Gao, Y., … Huang, C. (2007). A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Its Application in Bioimaging. Journal of the American Chemical Society, 129(34), 10322-10323. doi:10.1021/ja073140iCho, D.-G., Kim, J. H., & Sessler, J. L. (20

    Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review

    Get PDF
    The purpose of this review is to examine the literature that has investigated mechanomyographic (MMG) amplitude and frequency responses during dynamic muscle actions. To date, the majority of MMG research has focused on isometric muscle actions. Recent studies, however, have examined the MMG time and/or frequency domain responses during various types of dynamic activities, including dynamic constant external resistance (DCER) and isokinetic muscle actions, as well as cycle ergometry. Despite the potential influences of factors such as changes in muscle length and the thickness of the tissue between the muscle and the MMG sensor, there is convincing evidence that during dynamic muscle actions, the MMG signal provides valid information regarding muscle function. This argument is supported by consistencies in the MMG literature, such as the close relationship between MMG amplitude and power output and a linear increase in MMG amplitude with concentric torque production. There are still many issues, however, that have yet to be resolved, and the literature base for MMG during both dynamic and isometric muscle actions is far from complete. Thus, it is important to investigate the unique applications of MMG amplitude and frequency responses with different experimental designs/methodologies to continually reassess the uses/limitations of MMG
    corecore