18 research outputs found

    A plausible link between the asteroid 21 Lutetia and CH carbonaceous chondrites

    Get PDF
    A crucial topic in planetology research is establishing links between primitive meteorites and their parent asteroids. In this study we investigate the feasibility of a connection between asteroids similar to 21 Lutetia, encountered by the Rosetta mission in July 2010, and the CH3 carbonaceous chondrite Pecora Escarpment 91467 (PCA 91467). Several spectra of this meteorite were acquired in the ultraviolet to near-infrared (0.3 to 2.2 {\mu}m) and in the mid-infrared to thermal infrared (2.5 to 30.0 {\mu}m or 4000 to ~333 cm^-1), and they are compared here to spectra from the asteroid 21 Lutetia. There are several similarities in absorption bands and overall spectral behavior between this CH3 meteorite and 21 Lutetia. Considering also that the bulk density of Lutetia is similar to that of CH chondrites, we suggest that this asteroid could be similar, or related to, the parent body of these meteorites, if not the parent body itself. However, the apparent surface diversity of Lutetia pointed out in previous studies indicates that it could simultaneously be related to other types of chondrites. Future discovery of additional unweathered CH chondrites could provide deeper insight in the possible connection between this family of metal-rich carbonaceous chondrites and 21 Lutetia or other featureless, possibly hydrated high-albedo asteroids.Comment: 26 pages, 7 figures and 2 tables, Meteoritics and Planetary Science, manuscript #2225 (2016

    The reflectance spectra of CV-CK carbonaceous chondrites from the near-infrared to the visible

    Get PDF
    Carbonaceous chondrite meteorites are so far the only available samples representing carbon-rich asteroids and in order to allow future comparison with samples returned by missions such as Hayabusa 2 and OSIRIS-Rex, it is important to understand their physical properties. Future characterization of asteroid primitive classes, some of them targeted by sample-return missions, requires a better understanding of their mineralogy, the consequences of the exposure to space weathering, and how both affect the reflectance behaviour of these objects. In this paper, the reflectance spectra of two chemically related carbonaceous chondrites groups, precisely the Vigrano (CVs) and Karoonda (CKs), are measured and compared. The available sample suite includes polished sections exhibiting different petrologic types: from 3 (very low degree of thermal metamorphism) to 5 (high degree of thermal metamorphism). We found that the reflective properties and the comparison with the Cg asteroid reflectance class point towards a common chondritic reservoir from which the CV–CK asteroids collisionally evolved. In that scenario, the CV and CK chondrites could be originated from 221 Eos asteroid family, but because of its collisional disruption, both chondrite groups evolved separately, experiencing different stages of thermal metamorphism, annealing, and space weatheringPeer ReviewedPostprint (author's final draft

    Petrographic and geochemical evidence for multiphase formation of carbonates in the Martian orthopyroxenite Allan Hills 84001

    Get PDF
    This research has been funded by the Spanish Ministry of Science and Innovation (projects: AYA2011‐26,522, AYA 2015‐67175‐P, CTQ2015‐62,635‐ERC, and CTQ2014‐60,119‐P to which J.M. Trigo‐Rodríguez and C.E. Moyano‐Cambero acknowledge financial support). The UK Science and Technology Facilities Council is also thanked for funding through grants ST/H002960/1, ST/K000942/1, and ST/L002167/1. ICN2 and ICMAB acknowledge support of the Spanish MINECO through the Severo Ochoa Centers of Excellence Program under Grants SEV‐2013‐0295 and SEV‐2015‐0496, respectively. We acknowledge B. Ballesteros and M. Rosado from the ICN2 Electron Microscopy Division, and A. Fernández from the ICTS (National Center of Electronic Microscopy) for the SEM, EDS, and microprobe measurements. We also thank the NASA Meteorite Working Group, and the Johnson Space Center for providing the ALH 84001,82 section. This study was done in the frame of a PhD on Physics at the Autonomous University of Barcelona (UAB) under the direction of J. M. Trigo‐Rodríguez.Peer reviewedPublisher PD

    Nanoindenting the Chelyabinsk meteorite to learn about impact deflection effects in asteroids

    Get PDF
    The Chelyabinsk meteorite is a highly shocked, low porosity, ordinary chondrite, probably similar to S- or Q-type asteroids. Therefore, nanoindentation experiments on this meteorite allow us to obtain key data to understand the physical properties of near-Earth asteroids (NEAs). Tests at different length scales provide information about the local mechanical properties of the minerals forming this meteorite: reduced Young's modulus, hardness, elastic recovery, and fracture toughness. Those tests are also useful to understand the potential to deflect threatening asteroids using a kinetic projectile. We found that the differences in mechanical properties between regions of the meteorite, which increase or reduce the efficiency of impacts, are not a result of compositional differences. A low mean particle size, attributed to repetitive shock, can increase hardness, while low porosity promotes a higher momentum multiplication. Momentum multiplication is the ratio between the change in momentum of a target due to an impact, and the momentum of the projectile, and therefore higher values imply more efficient impacts. In the Chelyabinsk meteorite the properties of the light-colored lithology materials facilitate obtaining higher momentum multiplication values, compared to the other regions described for this meteorite. Also, we found a low value of fracture toughness in the shock-melt veins of Chelyabinsk, which would promote the ejection of material after an impact and therefore increase the momentum multiplication. These results are relevant in the context of a future mission to test asteroid deflection, currently being studied by ESA and NASA: the Asteroid Impact and Deflection Assessment (AIDA) mission

    Annama H chondrite-Mineralogy, physical properties, cosmic ray exposure, and parent body history

    Get PDF
    The fall of the Annama meteorite occurred early morning (local time) on April 19, 2014 on the Kola Peninsula (Russia). Based on mineralogy and physical properties, Annama is a typical H chondrite. It has a high Ar-Ar age of 4.4 Ga. Its cosmic ray exposure history is atypical as it is not part of the large group of H chondrites with a prominent 7-8 Ma peak in the exposure age histograms. Instead, its exposure age is within uncertainty of a smaller peak at 30 +/- 4 Ma. The results from short-lived radionuclides are compatible with an atmospheric pre-entry radius of 30-40 cm. However, based on noble gas and cosmogenic radionuclide data, Annama must have been part of a larger body (radius >65 cm) for a large part of its cosmic ray exposure history. The Be-10 concentration indicates a recent (3-5 Ma) breakup which may be responsible for the Annama parent body size reduction to 30-35 cm pre-entry radius.Peer reviewe

    The Ardon L6 ordinary chondrite: A long-hidden Spanish meteorite fall

    No full text
    We report and describe an L6 ordinary chondrite fall that occurred in Ardon, Leon province, Spain (longitude 5.5605 degrees W, latitude 42.4364 degrees N) on July 9th, 1931. The 5.5 g single stone was kept hidden for 83 yr by Rosa Gonzalez Perez, at the time an 11 yr old who had observed the fall and had recovered the meteorite. According to various newspaper reports, the event was widely observed in Northern Spain. Ardon is a very well-preserved, fresh, strongly metamorphosed (petrologic type 6), and weakly shocked (S3) ordinary chondrite with well-equilibrated and recrystallized minerals. The mineral compositions (olivine Fa(23.7 +/- 0.3), low-Ca pyroxene Fs(20.4 +/- 0.2)Wo(1.5 +/- 0.2), plagioclase An(10.3 +/- 0.5)Ab(84.3 +/- 1.2)), magnetic susceptibility (log chi = 4.95 +/- 0.05 x10(-9) m(3) kg(-1)), bulk density (3.49 +/- 0.05 g cm(-3)), grain density (3.58 +/- 0.05 g cm(-3)), and porosity (2.5 vol%) are typical for L6 chondrites. Short-lived radionuclides confirm that the meteorite constitutes a recent fall. The Ne-21 and Ar-38 cosmic ray exposure ages are both about 20-30 Ma, similar to values for many other L chondrites. The cosmogenic Ne-22/Ne-21 ratio indicates that preatmospheric Ardon was a relatively large body. The fact that the meteorite was hidden in private hands for 83 yr makes one wonder if other meteorite falls may have experienced the same fate, thus possibly explaining the anomalously low number of falls reported in continental Spain in the 20th century

    A plausible link between the asteroid 21 Lutetia and CH carbonaceous chondrites

    No full text
    A crucial topic in planetology research is establishing links between primitive meteorites and their parent asteroids. In this study, we investigate the feasibility of a connection between asteroids similar to 21 Lutetia, encountered by the Rosetta mission in July 2010, and the CH3 carbonaceous chondrite Pecora Escarpment 91467 (PCA 91467). Several spectra of this meteorite were acquired in the ultraviolet to near-infrared (0.3–2.2 µm) and in the midinfrared to thermal infrared (2.5–30.0 µm or 4000 to ~333 cm-1), and they are compared here to spectra from the asteroid 21 Lutetia. There are several similarities in absorption bands and overall spectral behavior between this CH3 meteorite and 21 Lutetia. Considering also that the bulk density of Lutetia is similar to that of CH chondrites, we suggest that this asteroid could be similar, or related to, the parent body of these meteorites, if not the parent body itself. However, the apparent surface diversity of Lutetia pointed out in previous studies indicates that it could simultaneously be related to other types of chondrites. Future discovery of additional unweathered CH chondrites could provide deeper insight in the possible connection between this family of metal-rich carbonaceous chondrites and 21 Lutetia or other featureless, possibly hydrated high-albedo asteroids.Peer Reviewe
    corecore