16,233 research outputs found

    The Dove

    Get PDF

    Directional genetic differentiation and asymmetric migration

    Get PDF
    Understanding the population structure and patterns of gene flow within species is of fundamental importance to the study of evolution. In the fields of population and evolutionary genetics, measures of genetic differentiation are commonly used to gather this information. One potential caveat is that these measures assume gene flow to be symmetric. However, asymmetric gene flow is common in nature, especially in systems driven by physical processes such as wind or water currents. Since information about levels of asymmetric gene flow among populations is essential for the correct interpretation of the distribution of contemporary genetic diversity within species, this should not be overlooked. To obtain information on asymmetric migration patterns from genetic data, complex models based on maximum likelihood or Bayesian approaches generally need to be employed, often at great computational cost. Here, a new simpler and more efficient approach for understanding gene flow patterns is presented. This approach allows the estimation of directional components of genetic divergence between pairs of populations at low computational effort, using any of the classical or modern measures of genetic differentiation. These directional measures of genetic differentiation can further be used to calculate directional relative migration and to detect asymmetries in gene flow patterns. This can be done in a user-friendly web application called divMigrate-online introduced in this paper. Using simulated data sets with known gene flow regimes, we demonstrate that the method is capable of resolving complex migration patterns under a range of study designs.Comment: 25 pages, 8 (+3) figures, 1 tabl

    Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection

    Get PDF
    We propose a method for detecting significant interactions in very large multivariate spatial point patterns. This methodology develops high dimensional data understanding in the point process setting. The method is based on modelling the patterns using a flexible Gibbs point process model to directly characterise point-to-point interactions at different spatial scales. By using the Gibbs framework significant interactions can also be captured at small scales. Subsequently, the Gibbs point process is fitted using a pseudo-likelihood approximation, and we select significant interactions automatically using the group lasso penalty with this likelihood approximation. Thus we estimate the multivariate interactions stably even in this setting. We demonstrate the feasibility of the method with a simulation study and show its power by applying it to a large and complex rainforest plant population data set of 83 species

    High-severity wildfire leads to multi-decadal impacts on soil biogeochemistry in mixed-conifer forests.

    Get PDF
    During the past century, systematic wildfire suppression has decreased fire frequency and increased fire severity in the western United States of America. While this has resulted in large ecological changes aboveground such as altered tree species composition and increased forest density, little is known about the long-term, belowground implications of altered, ecologically novel, fire regimes, especially on soil biological processes. To better understand the long-term implications of ecologically novel, high-severity fire, we used a 44-yr high-severity fire chronosequence in the Sierra Nevada where forests were historically adapted to frequent, low-severity fire, but were fire suppressed for at least 70 yr. High-severity fire in the Sierra Nevada resulted in a long-term (44 +yr) decrease (>50%, P < 0.05) in soil extracellular enzyme activities, basal microbial respiration (56-72%, P < 0.05), and organic carbon (>50%, P < 0.05) in the upper 5 cm compared to sites that had not been burned for at least 115 yr. However, nitrogen (N) processes were only affected in the most recent fire site (4 yr post-fire). Net nitrification increased by over 600% in the most recent fire site (P < 0.001), but returned to similar levels as the unburned control in the 13-yr site. Contrary to previous studies, we did not find a consistent effect of plant cover type on soil biogeochemical processes in mid-successional (10-50 yr) forest soils. Rather, the 44-yr reduction in soil organic carbon (C) quantity correlated positively with dampened C cycling processes. Our results show the drastic and long-term implication of ecologically novel, high-severity fire on soil biogeochemistry and underscore the need for long-term fire ecological experiments

    Ark or park: the need to predict relative effectiveness of ex situ and in situ conservation before attempting captive breeding

    Get PDF
    1. When species face extinction, captive breeding may be appropriate. However, captive breeding may be unsuccessful, while reducing motivation and resources for in situ conservation and impacting wild source populations. Despite such risks, decisions are generally taken without rigorous evaluation. We develop an individual-based, stochastic population model to evaluate the potential effectiveness of captive-breeding and release programmes, illustrated by the Critically Endangered Ardeotis nigriceps Vigors great Indian bustard. 2. The model was parameterized from a comprehensive review of captive breeding and wild demography of large bustards. To handle uncertainty in the standards of captive-breeding performance that may be achieved we explored four scenarios of programme quality: ‘full-range’ (parameters sampled across the observed range), ‘below-average’, ‘above-average’ and ‘best possible’ (performance observed in exemplary breeding programmes). Results are evaluated examining i) the probability of captive population extirpation within 50 years and ii) numbers of adult females subsequently established in the wild following release, compared to an alternative strategy of in situ conservation without attempting captive breeding. 3. Successful implementation of captive breeding, involving permanent retention of 20 breeding females and release of surplus juveniles, required collection of many wild eggs and consistent ‘best possible’ performance across all aspects of the programme. Under ‘full-range’ and ‘above-average’ scenarios captive population extirpation probabilities were 73–88% % and 23‒51%% respectively, depending on egg collection rates. 4. Although most (73‒92%) ‘best possible’ programmes supported releases, re-establishment of free-living adults also required effective in situ conservation. Incremental implementation of effective conservation measures over the initial 10 years resulted in more free-living adults within 35 years if eggs were left in the wild without attempting captive breeding. 5. Synthesis and applications. For the great Indian bustard Ardeotis nigriceps, rapid implementation of in situ conservation offers a better chance to avoid extinction than captive breeding. Demographic modelling should be used to examine whether captive breeding is likely to bring net benefits to conservation programmes

    Not all surveillance data are created equal—A multi‐method dynamic occupancy approach to determine rabies elimination from wildlife

    Get PDF
    1. A necessary component of elimination programmes for wildlife disease is effective surveillance. The ability to distinguish between disease freedom and non‐detection can mean the difference between a successful elimination campaign and new epizootics. Understanding the contribution of different surveillance methods helps to optimize and better allocate effort and develop more effective surveillance programmes. 2. We evaluated the probability of rabies virus elimination (disease freedom) in an enzootic area with active management using dynamic occupancy modelling of 10 years of raccoon rabies virus (RABV) surveillance data (2006–2015) collected from three states in the eastern United States. We estimated detection probability of RABV cases for each surveillance method (e.g. strange acting reports, roadkill, surveillance‐trapped animals, nuisance animals and public health samples) used by the USDA National Rabies Management Program. 3. Strange acting, found dead and public health animals were the most likely to detect RABV when it was present, and generally detectability was higher in fall– winter compared to spring–summer. Found dead animals in fall–winter had the highest detection at 0.33 (95% CI: 0.20, 0.48). Nuisance animals had the lowest detection probabilities (~0.02). 4. Areas with oral rabies vaccination (ORV) management had reduced occurrence probability compared to enzootic areas without ORV management. RABV occurrence was positively associated with deciduous and mixed forests and medium to high developed areas, which are also areas with higher raccoon (Procyon lotor) densities. By combining occupancy and detection estimates we can create a probability of elimination surface that can be updated seasonally to provide guidance on areas managed for wildlife disease. 5. Synthesis and applications. Wildlife disease surveillance is often comprised of a combination of targeted and convenience‐based methods. Using a multi‐method analytical approach allows us to compare the relative strengths of these methods, providing guidance on resource allocation for surveillance actions. Applying this multi‐method approach in conjunction with dynamic occupancy analyses better informs management decisions by understanding ecological drivers of disease occurrence

    Optimizing passive acoustic sampling of bats in forests

    Get PDF
    Passive acoustic methods are increasingly used in biodiversity research and monitoring programs because they are cost-effective and permit the collection of large datasets. However, the accuracy of the results depends on the bioacoustic characteristics of the focal taxa and their habitat use. In particular, this applies to bats which exhibit distinct activity patterns in three-dimensionally structured habitats such as forests. We assessed the performance of 21 acoustic sampling schemes with three temporal sampling patterns and seven sampling designs. Acoustic sampling was performed in 32 forest plots, each containing three microhabitats: forest ground, canopy, and forest gap. We compared bat activity, species richness, and sampling effort using species accumulation curves fitted with the clench equation. In addition, we estimated the sampling costs to undertake the best sampling schemes. We recorded a total of 145,433 echolocation call sequences of 16 bat species. Our results indicated that to generate the best outcome, it was necessary to sample all three microhabitats of a given forest location simultaneously throughout the entire night. Sampling only the forest gaps and the forest ground simultaneously was the second best choice and proved to be a viable alternative when the number of available detectors is limited. When assessing bat species richness at the 1-km(2) scale, the implementation of these sampling schemes at three to four forest locations yielded highest labor cost-benefit ratios but increasing equipment costs. Our study illustrates that multiple passive acoustic sampling schemes require testing based on the target taxa and habitat complexity and should be performed with reference to cost-benefit ratios. Choosing a standardized and replicated sampling scheme is particularly important to optimize the level of precision in inventories, especially when rare or elusive species are expected

    A Note on Prediction of Wood Properties in Yellow-Poplar

    Get PDF
    Increment core samples were taken from fifteen yellow-poplar trees at breast height and determinations of specific gravity and fiber length were made on selected individual growth rings. Juvenile wood and mature wood of different growth rates were compared. The results show mature wood specific gravity uncorrelated with growth rate and mature wood fiber length increasing with increasing growth rate. The extremely low correlation obtained between juvenile wood and mature wood properties within the same tree indicates that no predictive relationship exists for use in selection at a very early age

    Parasite infections in a social carnivore: Evidence of their fitness consequences and factors modulating infection load

    Get PDF
    There are substantial individual differences in parasite composition and infection load in wildlife populations. Few studies have investigated the factors shaping this heterogeneity in large wild mammals or the impact of parasite infections on Darwinian fitness, particularly in juveniles. A host's parasite composition and infection load can be shaped by factors that determine contact with infective parasite stages and those that determine the host's resistance to infection, such as abiotic and social environmental factors, and age. Host–parasite interactions and synergies between coinfecting parasites may also be important. We test predictions derived from these different processes to investigate factors shaping infection loads (fecal egg/oocyte load) of two energetically costly gastrointestinal parasites: the hookworm Ancylostoma and the intracellular Cystoisospora, in juvenile spotted hyenas (Crocuta crocuta) in the Serengeti National Park, in Tanzania. We also assess whether parasite infections curtail survival to adulthood and longevity. Ancylostoma and Cystoisospora infection loads declined as the number of adult clan members increased, a result consistent with an encounter‐reduction effect whereby adults reduced encounters between juveniles and infective larvae, but were not affected by the number of juveniles in a clan. Infection loads decreased with age, possibly because active immune responses to infection improved with age. Differences in parasite load between clans possibly indicate variation in abiotic environmental factors between clan den sites. The survival of juveniles (<365 days old) to adulthood decreased with Ancylostoma load, increased with age, and was modulated by maternal social status. High‐ranking individuals with low Ancylostoma loads had a higher survivorship during the first 4 years of life than high‐ranking individuals with high Ancylostoma loads. These findings suggest that high infection loads with energetically costly parasites such as hookworms during early life can have negative fitness consequences

    Molecular footprints of the Holocene retreat of dwarf birch in Britain

    Get PDF
    © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited
    corecore