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Abstract
1.	 A	necessary	component	of	elimination	programmes	for	wildlife	disease	is	effec-
tive	surveillance.	The	ability	to	distinguish	between	disease	freedom	and	non-de-
tection	can	mean	the	difference	between	a	successful	elimination	campaign	and	
new	epizootics.	Understanding	the	contribution	of	different	surveillance	methods	
helps	to	optimize	and	better	allocate	effort	and	develop	more	effective	surveil-
lance	programmes.

2.	 We	evaluated	the	probability	of	rabies	virus	elimination	(disease	freedom)	in	an	
enzootic	 area	with	 active	management	 using	 dynamic	 occupancy	modelling	 of	
10	years	of	raccoon	rabies	virus	(RABV)	surveillance	data	(2006–2015)	collected	
from	three	states	in	the	eastern	United	States.	We	estimated	detection	probability	
of	RABV	cases	for	each	surveillance	method	(e.g.	strange	acting	reports,	roadkill,	
surveillance-trapped	animals,	nuisance	animals	and	public	health	samples)	used	by	
the	USDA	National	Rabies	Management	Program.

3.	 Strange	acting,	found	dead	and	public	health	animals	were	the	most	likely	to	de-
tect	RABV	when	 it	was	present,	 and	generally	detectability	was	higher	 in	 fall–
winter	 compared	 to	 spring–summer.	Found	dead	animals	 in	 fall–winter	had	 the	
highest	detection	at	0.33	(95%	CI:	0.20,	0.48).	Nuisance	animals	had	the	lowest	
detection	probabilities	(~0.02).

4.	 Areas	with	oral	 rabies	vaccination	 (ORV)	management	had	 reduced	occurrence	
probability	compared	to	enzootic	areas	without	ORV	management.	RABV	occur-
rence	was	positively	associated	with	deciduous	and	mixed	 forests	and	medium	
to	high	developed	areas,	which	are	also	areas	with	higher	raccoon	(Procyon lotor)	
densities.	By	combining	occupancy	and	detection	estimates	we	can	create	a	prob-
ability	of	elimination	surface	that	can	be	updated	seasonally	to	provide	guidance	
on	areas	managed	for	wildlife	disease.

5. Synthesis and applications.	Wildlife	 disease	 surveillance	 is	 often	 comprised	 of	 a	
combination	of	targeted	and	convenience-based	methods.	Using	a	multi-method	
analytical	approach	allows	us	to	compare	the	relative	strengths	of	these	methods,	
providing	guidance	on	resource	allocation	for	surveillance	actions.	Applying	this	
multi-method	approach	in	conjunction	with	dynamic	occupancy	analyses	better	
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1  | INTRODUC TION

Knowing	when	elimination	of	a	wildlife	disease	has	been	achieved	
is	 often	difficult	 to	 assess	 as	many	wildlife	diseases	naturally	 per-
sist	at	low	prevalence	(Nusser,	Clark,	Otis,	&	Huang,	2008;	Rhyan	&	
Spraker,	2010).	Knowledge	about	the	presence	of	wildlife	diseases	on	
a	landscape	is	often	further	complicated	by	imperfect	detection	of	
the	host	species	or	disease	of	interest	(Bailey,	MacKenzie,	&	Nichols,	
2014;	Pepin	et	al.,	2017),	inconsistent	or	opportunistic	surveillance	
(Artois	et	al.,	2009;	Duncan,	Backus,	Lynn,	Powers,	&	Salman,	2008)	
and	low	reporting	rates.	Successful	wildlife	disease	management	is	
contingent	 on	 being	 able	 to	 distinguish	 true	 elimination	 from	 lack	
of	detection	of	the	disease	(Anderson	et	al.,	2013).	If	elimination	is	
prematurely	declared	(Rosatte,	Power,	et	al.,	2007),	and	monitoring	
and	management	resources	are	shifted,	a	new	epizootic	could	occur	
(Middel,	Fehlner-Gardiner,	Pulham,	&	Buchanan,	2017).

The	elimination	of	wildlife	disease	can	only	be	inferred	through	
surveillance	 effort	where	 no	 infected	 animals	 are	 detected	 (nega-
tive	surveillance),	and	certainty	of	elimination	is	dependent	on	the	
amount	 of	 surveillance	 effort	 and	 the	 likelihood	 of	 detecting	 the	
disease	by	the	surveillance	methods	employed.	Surveillance	of	wild-
life	 diseases	 often	 consists	 of	 opportunistic	 rather	 than	 random	
sampling	methods	(e.g.	reported	nuisance	animals,	roadkill;	Duncan	
et	 al.,	 2008;	Nusser	 et	 al.,	 2008),	which	 cannot	 be	 described	 sta-
tistically	 (and	thus	have	 limitations	 in	 their	scope	of	 inference	and	
likely	result	in	biased	estimates)	but	they	are	often	the	most	common	
type	of	data	available	for	wildlife	disease	surveillance	and	monitor-
ing.	Targeted	wildlife	disease	sampling	can	be	statistically	rigorous	
but	 is	often	ephemerally	applied	and	not	practical	 for	broad-scale	
surveillance	 (Martin,	Cameron,	&	Greiner,	2007).	Occupancy	mod-
elling,	 which	 simultaneously	 estimates	 occurrence	 and	 detection	
(MacKenzie	et	al.,	2006),	 is	well	 suited	 to	answer	questions	about	
wildlife	 disease	 distribution,	 invasion	 dynamics	 and	 detectability,	
and	is	increasingly	being	applied	to	wildlife	disease	problems	(Bailey	
et	 al.,	 2014;	 Lachish,	 Gopalaswamy,	 Knowles,	 &	 Sheldon,	 2012;	
Pepin	 et	 al.,	 2017).	 By	 combining	 and	 evaluating	multiple	 surveil-
lance	methods	 in	 a	 single	 occupancy	 framework,	we	 can	not	 only	
better	estimate	the	epidemiological	patterns	of	the	disease	of	inter-
est	but	we	also	can	improve	the	probability	of	disease	detection.	Just	
as	multiple	diagnostic	tests	may	be	used	to	improve	the	accuracy	of	a	
diagnosis	(Baker,	1995;	Dendukuri	&	Joseph,	2001),	multiple	surveil-
lance	methods	can	be	used	to	improve	the	accuracy	of	determining	
the	status	of	a	wildlife	disease	 in	an	area	of	 interest	 (Martin	et	al.,	
2007).	In	addition,	by	using	multiple	surveillance	methods	we	have	

the	ability	to	evaluate	the	probability	a	given	method	will	detect	the	
disease	given	it	 is	present,	and	not	simply	estimate	apparent	prev-
alence	of	the	disease	within	a	given	surveillance	type	(Pepin	et	al.,	
2017).	Using	occupancy	modelling,	we	can	estimate	the	probability	
of	disease	elimination	(freedom	from	a	disease—regardless	of	previ-
ous	disease	status)	within	a	spatial	area	for	a	given	time	period	based	
on	sampling	effort	and	occurrence	patterns.	This	in	turn	allows	us	to	
plan	surveillance	such	that	we	collect	a	sufficient	number	of	samples	
across	space	and	time	to	achieve	a	desired	level	of	certainty	about	
disease	elimination	from	a	defined	area.

Rabies	is	a	viral	zoonosis	with	a	near	global	distribution	in	domes-
tic	animals	and	wildlife	(Gilbert,	2018).	The	greatest	human	disease	
burden	 from	rabies	virus	 (RABV)	globally	 is	associated	with	 trans-
mission	from	domestic	dogs	(Hampson	et	al.,	2015).	However,	RABV	
also	 circulates	 independently	 in	 diverse	 bat	 and	 carnivore	wildlife	
reservoirs	 (Gilbert,	 2018;	Velasco-Villa	 et	 al.,	 2017),	which	 are	 as-
sociated	human	exposures	and	prophylactic	 treatments	 (Christian,	
Blanton,	 Auslander,	 &	 Rupprecht,	 2009),	 with	 economic	 costs	
(Sterner	&	Smith,	2006).	Control	of	RABV	circulation	in	domestic	and	
wild	 carnivores	 focuses	on	 the	principle	of	preventive	vaccination	
to	 reduce	susceptible	 fractions	of	a	 target	population	 to	eliminate	
disease	transmission.	Wildlife	vaccination	against	RABV	relies	prin-
cipally	 on	broadcast	 distribution	of	 vaccine	baits	 for	 consumption	
by	target	animals,	a	strategy	known	as	oral	rabies	vaccination	(ORV;	
Mähl	et	al.,	2014;	Rosatte,	Tinline,	&	Johnston,	2007).	ORV	strate-
gies	have	been	used	to	eliminate	RABV	from	red	foxes	(Vulpes vulpes)	
across	large	landscapes	in	Europe	(Freuling	et	al.,	2013;	Müller	et	al.,	
2015),	as	well	as	a	dog	RABV	variant	from	coyotes	(Canis latrans)	in	
the	United	States	(Velasco-Villa	et	al.,	2008).	Since	the	mid-1990s,	
ORV	has	been	used	to	work	towards	the	elimination	of	and	to	pre-
vent	the	spread	of	RABV	in	raccoons	(Procyon lotor)	 in	the	eastern	
United	States	(Elmore	et	al.,	2017).	Surveillance	is	a	key	component	
of	effective	ORV	and	other	disease	management	programmes,	and	is	
required	to	assess	programme	impact	and	disease	elimination	status	
(Cliquet	et	al.,	2010;	Freuling	et	al.,	2013).

Surveillance	 of	 wildlife	 disease	 often	 leverages	 multiple	
sources	of	 information	 that	may	be	of	unequal	value	 for	disease	
detection	(Kirby	et	al.,	2017).	Understanding	the	relative	strengths	
and	weaknesses	of	different	surveillance	methods	will	help	to	pri-
oritize	resources	and	effort	to	maximize	disease	detection	on	the	
landscape.	We	 used	 a	 dynamic	 occupancy	 approach	 to:	 (a)	 esti-
mate	 local	RABV	elimination	probability,	 (b)	quantify	the	relative	
contribution	 of	 different	 surveillance	methods	 for	 RABV	 detec-
tion,	 (c)	 estimate	 sample	 sizes	 needed	 across	 space	 and	 time	 to	

informs	 management	 decisions	 by	 understanding	 ecological	 drivers	 of	 disease	
occurrence.

K E Y W O R D S

dynamic	occupancy,	elimination,	multi-method	occupancy,	rabies	virus,	raccoon,	surveillance,	
wildlife	disease
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achieve	 a	 desired	 level	 of	 elimination	 certainty,	 and	 (d)	 identify	
seasonal	 and	 landscape	 variables	 that	 relate	 to	 the	 presence	 or	
absence	of	RABV	in	wild	carnivores.

2  | MATERIAL S AND METHODS

2.1 | Study area

Raccoon	 variant	 RABV	 is	 enzootic	 in	 raccoon	 populations	 along	
the	 east	 coast	 of	 the	 United	 States	 (Elmore	 et	 al.,	 2017).	 The	
United	States	Department	of	Agriculture,	Animal	and	Plant	Health	
Inspection	 Service,	 Wildlife	 Services	 (WS)	 and	 National	 Rabies	
Management	Program	(NRMP;	cumulatively	hereafter	generally	re-
ferred	to	as	NRMP),	has	been	conducting	ORV	focused	on	prevent-
ing	the	spread	of	and	eventually	eliminating	raccoon	RABV	from	the	
United	States.	The	ORV	zone	for	raccoon	RABV	in	the	United	States	
extends	 across	 16	 states	 from	Maine	 in	 the	 north	 to	 Alabama	 in	
the	south	(Figure	1).	NRMP	has	also	implemented	a	comprehensive	
enhanced	 rabies	 surveillance	 (ERS)	 programme	 to	 monitor	 RABV	
incidence,	especially	in	relation	to	management	actions.	ERS	is	com-
plementary	to	public	health	surveillance	(where	animals	are	sampled	
following	exposures	to	humans	or	pets),	and	involves	efforts	to	col-
lect	and	test	samples	 that	would	not	otherwise	be	tested	through	
public	health	surveillance.	As	a	result,	high-priority	ERS	areas	border	
the	ORV	zone	(Figure	1).

To	 evaluate	 the	 value	 of	 different	 surveillance	 methods	 for	
RABV	detection	and	to	estimate	elimination	probabilities,	we	se-
lected	a	 region	of	 the	ORV	zone	and	ERS	area	with	 a	high	 con-
centration	of	 animal	 samples	 to	maximize	our	power	 to	 identify	
signals	 from	 these	 data.	 We	 focused	 on	 counties	 with	 at	 least	
100	animals	sampled	within	our	10-year	study	period	in	western	
Pennsylvania,	eastern	Ohio	and	northern	West	Virginia	(Figure	1).	
This	 contiguous	 region	 largely	 consists	 of	 cultivated	 crops,	 pas-
ture	 and	 hay	 fields	 surrounded	 by	 deciduous	 forests.	 The	 area	
(49,367	km2)	 includes	 the	city	of	Pittsburgh	and	 its	 surrounding	
suburbs.

2.2 | Data

Data	 consist	 of	 individually	 sampled	 animals	 that	 are	 tested	 for	
RABV.	Data	include:	location,	date	of	collection,	which	agency	col-
lected	the	sample,	how	the	animal	was	encountered	(e.g.	trapped,	
roadkill,	 incidental	 take,	 carcass	collection),	 the	 fate	of	 the	animal	
(e.g.	found	dead,	euthanized,	non-WS	sampled)	and	field	comments.	
In	2016,	NRMP	developed	six	 surveillance	categories	 for	 classify-
ing	ERS	 collections	 for	more	 strategic	 surveillance	 effort:	 strange	
acting,	found	dead,	roadkill,	surveillance-trapped,	nuisance	wildlife	
control	 officer	 (NWCO)	 collected/other	 (referring	 to	 nuisance	 re-
ported	animals,	we	have	termed	this	“nuisance”)	and	unknown	(re-
ferring	to	the	unknown	behavioural	state	of	the	animal;	Kirby	et	al.,	
2017).	Prior	to	2016,	the	data	had	not	been	similarly	classified.	We	
used	the	method	of	collection,	fate	data	and	comments	to	post-pro-
cess	the	ERS	data	from	2006	to	2015	according	to	similar	categories	
(see	Appendix	S1).

Brain	tissue	from	each	animal	collected	by	the	NRMP	was	ini-
tially	 tested	 for	 rabies	using	 the	direct	 rapid	 immunohistochemi-
cal	 test	 (dRIT;	Rupprecht	et	al.,	2014).	All	positive,	 indeterminate	
and	10%	of	negative	dRIT	 samples	were	 subject	 to	confirmatory	
test	 by	 direct	 fluorescent	 antibody	 assay	 (DFA;	 Ronald	 et	 al.,	
2003).	Where	discrepant	 (<0.01%	of	 samples),	 the	 results	 of	 the	
DFA	 test	 were	 considered	 final.	 All	 positive	 cases	 were	 geno-
typed	 to	 identify	 the	RABV	variant	 infecting	 the	 animal	 (Szanto,	
Nadin-Davis,	 Rosatte,	&	White,	 2011).	 Public	 health	 surveillance	
data	are	reported	annually	by	more	than	130	state	public	health,	
veterinary,	and	university	laboratories	to	the	Centers	for	Disease	
Control	and	Prevention	and	 include	 individual	animals	 suspected	
of	human	or	pet	exposure	which	were	tested	using	DFA	to	inform	
decisions	about	post-exposure	prophylaxis	for	humans	and	animal	
quarantine	 (Brown,	 Slavinski,	 Ettestad,	 Sidwa,	 &	 Sorhage,	 2016;	
Manning	et	al.,	2008).	A	fraction	(~10%)	of	the	public	health	RABV	
cases	are	typed	to	variant,	but	most	cases	occurring	in	the	eastern	
United	States	can	be	presumed	to	be	infected	with	raccoon	RABV	
(Wallace	et	al.,	2014).

F I G U R E  1   (a)	Study	area	(shaded	grey)	
with	RABV-negative	(black	circles)	and	
-positive	(red	triangles)	raccoon	rabies	
samples	from	2006	to	2015.	Positive	
samples	are	plotted	on	top	of	negative	
samples	for	ease	of	visualization.	The	oral	
rabies	vaccination	(ORV)	zone	is	shown	
as	a	blue	shaded	region.	(b)	Surveillance	
sampling	locations	in	the	study	area	
colour	coded	by	surveillance	method.	The	
negatives	are	circles	and	the	positives	are	
triangles.	The	inset	shows	the	location	
of	the	study	area	in	the	eastern	United	
States	(black)
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2.3 | Occupancy model formulation

We	used	a	dynamic	occupancy	approach	(MacKenzie	et	al.,	2006)	to	
evaluate	RABV	occurrence	spatially	and	temporally	in	our	study	area.	
Across	the	study	area,	we	overlaid	a	10	km	by	10	km	grid	to	process	
the	data	to	a	resolution	that	matches	ERS	sampling.	Occupancy	analy-
ses	assume	that	the	occupancy	status	of	rabies	within	a	site	does	not	
change	 (i.e.	 closure)	during	a	 sampling	occasion	 (termed	 the	primary	
sampling	period).	The	diagnostic	tests	for	RABV	detect	infection	during	
the	 infectious	but	not	 incubating	phase.	Since	the	 incubation	period	
for	RABV	ranges	on	average	from	3	to	12	weeks	(Tinline,	Rosatte,	&	
MacInnes,	2002),	we	used	astronomical	seasons	as	our	primary	sam-
pling	periods	(where	closure	is	assumed).	This	time	period	both	reduces	
issues	with	potential	closure	violations,	and	also	helps	to	increase	the	
probability	of	detecting	RABV	status	 transitions	 as	 surveillance	data	
are	not	routinely	collected	by	sites	to	be	able	to	document	transitions.

Dynamic	occupancy	models	can	be	expressed	in	a	hierarchical	frame-
work.	The	hidden	ecological	state,	zit,	indicates	whether	site	i in primary 
sampling	period	t	was	occupied	with	RABV	(regardless	of	whether	it	was	
detected).	We	used	the	number	of	rabies-positive	samples,	yijt,	and	num-
ber	of	total	animals	sampled,	nijt,	within	site	i,	using	sampling	method	j,	
and	within	a	primary	sampling	period	t,	to	estimate	the	observation	pro-
cess	(pj,	detection	probability	for	method	j),	given	the	hidden	ecological	
process	was	occupied,	zit	=	1.	The	observation	process	is	modelled	as	a	
beta	distribution	by	surveillance	method	and	accounting	for	within-year	
variability	 in	detection	 (j)	using	vague	priors	 (Equation	2).	Surveillance	
efforts	are	greater	in	the	spring	and	summer	compared	to	the	fall	and	
winter,	which	may	correspond	to	different	detection	probabilities	during	
these	periods	and	they	were	modelled	accordingly.	A	detection	in	any	of	
the	surveillance	methods	would	suggest	the	site	was	occupied	in	that	
time	step,	and	therefore	would	influence	the	probability	of	detection	of	
all	other	surveillance	methods	(Nichols	et	al.,	2008).

We	 can	 explicitly	 model	 the	 ecological	 transition	 dynamics	 of	
colonization	(the	probability	an	uninfected	site	becomes	infected,	γ)	
and	extinction	(the	probability	an	infected	site	becomes	uninfected,	
ε).	The	conditional	probability	of	the	state	of	a	site	i	in	time	t	given	
the	state	in	time	t	−	1	was	modelled	as	a	Bernoulli	random	variable	
with	probability	ψ it	 (Equation	3).	 The	 initial	 occupancy	probability,	
ψ i1,	was	modelled	as	a	function	of	covariates,	Xψ,	with	linear	regres-
sion	coefficients,	βψ,	Equation	(4).	Subsequent	occupancy	estimates	
(after	the	initial	occupancy	t	=	1)	were	derived	from	the	initial	occu-
pancy	and	the	transition	rates	(Equation	5).

The	transition	parameters,	εit and γit,	were	modelled	as	combina-
tions	of	covariates,	Xε and Xγ,	with	linear	regression	coefficients	βε and 
βγ,	in	Equations	(6)	and	(7).	Extinction	(εit)	was	modelled	with	a	simple	
intercept	only	model.	To	understand	the	spatial	and	temporal	variabil-
ity	 in	RABV	occupancy	 in	our	study,	covariates	 included	spatial	pat-
terns	(e.g.	management	effects,	habitat	effects	and	neighbour	effect)	
and	temporal	patterns	(e.g.	seasonality	and	trends	in	RABV	occurrence	
across	years).	Management	effects	were	defined	spatially	by	the	ORV	
zone	 in	the	western	quarter	of	the	study	area,	where	we	 included	a	
covariate	on	colonization	for	grid	cells	within	that	ORV	zone	(modelled	
as	a	binary	factor	where	over	half	of	the	grid	cell	must	be	in	the	ORV	
zone	 to	be	 considered	 in	 the	ORV	zone).	Habitat	 effects	may	 influ-
ence	animal	host	 and	 rabies	occurrence	 so	we	used	 covariates	 that	
may	relate	to	raccoon	densities	and	contact	rates	(Recuenco,	Blanton,	
&	Rupprecht,	2012).	We	evaluated	three	habitat	coverage	groupings	
derived	 from	 the	 National	 Land	 Cover	 Database	 2011	 (Homer	 et	
al.,	 2015).	Additionally,	 the	 probability	 for	 colonization	 of	 grid	 cells	
with	RABV	may	be	related	to	the	number	of	positive	RABV	cases	in	
neighbouring	 sites	 in	 the	previous	 time	 step	 (infection	density).	We	
also	expect	 there	 to	be	 temporal	 fluctuations,	 so	we	examined	sea-
sonal	variability	(modelled	using	a	series	of	dummy	covariates	for	the	
standard	calendar	seasons)	and	an	annual	trend	in	RABV	occurrence.	
Equation	 (7)	can	be	expanded	to	demonstrate	how	these	covariates	
were	modelled	on	colonization	(Equation	8).

To	calculate	 the	posterior	distributions	 for	 this	model	we	used	
a	Markov	Chain	Monte	Carlo	 algorithm	with	Metropolis–Hastings	
steps	 custom	 coded	 in	 Program	R	 (R	Core	 Team,	 2017).	We	 used	
200,000	iterations	with	a	100,000	run	burn-in	and	five	chains.	We	
assessed	 distribution	 convergence	 and	 mixing	 using	 visual	 diag-
nostics	and	Gelman–Rubin	statistics	 (Gelman	et	al.,	2013).	The	full	
posterior	distribution	and	conditional	distributions	are	provided	 in	
Appendix	S2.

2.4 | Posterior analyses

Using	posterior	estimates	of	occupancy	and	detection	probabilities,	
we	 calculated	 the	 effective	 probability	 of	 detection,	 p∗,	 account-
ing	 for	 all	 sampling	methods,	 J,	 and	 sampling	 effort	 by	method	 ej 
(Equation	8).	Using	 the	effective	detection	probability,	p∗,	we	 can	
calculate	 the	 probability	 of	 elimination	 for	 each	 site	 at	 each	 time	
point	 (Equation	 9;	Nichols	 et	 al.,	 2008).	 By	 rearranging	 Equations	
(9)	and	(10),	we	can	calculate	the	sample	size	(e)	needed	for	a	single	
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surveillance	method	to	achieve	a	given	certainty	of	elimination	under	
a	specific	occupancy	probability	for	a	particular	grid	cell	at	a	given	
time	step	(Equation	11).

Only	 the	 initial	 occupancy	 estimate	was	modelled	 directly,	 the	
occupancy	estimates	for	the	remaining	time	steps	were	derived	from	
the	initial	occupancy	and	the	transition	rates	(Equation	5).	Therefore,	
covariate	 relationships	 were	 modelled	 on	 the	 transition	 rates	 (ex-
tinction	 and	 colonization).	However,	we	were	 ultimately	 interested	
in	how	occupancy	changed	with	respect	to	the	spatial	and	temporal	
covariates.	Therefore,	we	conducted	post	hoc	beta	regression	analy-
ses	(conducted	in	Program	R,	package	'betareg',	which	uses	maximum	
likelihood	 to	 fit	 regression	models	 to	beta	distributed	data;	Gruen,	
Kosmidis,	&	Zeileis,	2012)	using	 the	occupancy	estimates	 from	 the	
model	as	the	response	and	habitat	covariates	including	the	percent	
coverage	of:	cultivated	crops,	deciduous	and	mixed	forests,	evergreen	
forests,	pasture	lands,	open	space	and	low	developed	areas,	medium	
and	high	developed	areas,	and	wetlands;	and	categorical	seasonal	ef-
fects,	and	annual	trend	effect	as	the	predictors.	We	also	looked	at	an	
interaction	between	 the	spatial	and	 temporal	effects	and	 the	ORV	
zone	to	determine	 if	spatial	and	temporal	patterns	were	consistent	
across	management	areas	(within	and	to	the	east	of	the	ORV	zone).

2.5 | Validation and surveillance method 
bias comparison

We	evaluated	model	fit	using	Bayesian	p-values	with	deviance	as	our	
test	 statistic	 (Broms,	 Hooten,	 &	 Fitzpatrick,	 2016;	 Gelman,	 Meng,	
&	Stern,	1996).	Values	 close	 to	0.5	 suggest	good	 fit,	whereas	values	
greater	than	.95	or	less	than	.05	suggest	poor	fit	(Broms	et	al.,	2016).	
We	used	an	area	under	the	curve	(AUC)	statistic	suggested	by	Zipkin,	
Grant,	and	Fagan	 (2012)	to	assess	sensitivity	and	specificity	of	occu-
pancy	estimates	by	models	using	single	surveillance	types	compared	to	
the	estimated	occupancy	status	(zit)	from	the	full	dataset.	We	also	visu-
ally	compared	estimates	of	occupancy	to	observed	positive	and	nega-
tive	data.	Due	to	imperfect	detection	with	our	data,	high	probabilities	of	
occupancy	in	areas	where	only	negative	samples	were	observed	could	
be	expected.	We	also	examined	how	the	model	performs	at	prediction.	
We	withheld	the	last	2	years	of	data	(eight	time	steps)	and	fit	the	model	
to	the	data	without	these	years	of	data.	Additionally,	we	compared	the	
number	of	sites	where	we	would	declare	elimination	with	95%	probabil-
ity	with	the	proportion	of	those	sites	that	became	occupied	during	the	
next	time	step	using	the	dataset	withholding	the	last	2	years.

We	 used	 multiple	 surveillance	 methods	 to	 estimate	 elimination	
probability	and	evaluate	detection	probability	for	each	method	in	our	

study.	The	objective	of	using	multiple	methods	was	to	reduce	the	bias	
inherent	with	any	individual	method.	We	compared	the	estimates	using	
the	 full	 dataset	 (with	 all	 surveillance	 types)	 to	 estimates	 using	 each	
method	of	surveillance	separately,	to	examine	the	relative	biases	of	the	
different	surveillance	types.	Since	positive	samples	from	any	method	
are	true	representations	of	the	positive	status	of	a	grid	cell	in	a	given	
time	period	(i.e.	there	are	no	false	positives),	this	method	of	assessing	
bias	highlighted	spatial	or	temporal	patterns	of	particular	methods	that	
failed	to	detect	positive	RABV	cases	observed	by	other	methods.

3  | RESULTS

During	the	10-year	period	of	our	study	there	were	23,635	raccoons	
sampled,	of	which	787	were	rabid	(3.3%).	Public	health	and	nuisance	
animals	represented	the	largest	proportions	of	all	of	the	samples	col-
lected	 (8,982/23,635	 =	 38.0%	 and	 7,249/23,635	 =	 30.7%	 respec-
tively;	Table	1).

3.1 | Rabies occurrence

The	 mean	 probability	 of	 RABV	 occupancy	 in	 a	 grid	 cell	 within	 a	
season	in	the	ORV	management	area	was	0.34	(95%	credible	inter-
vals,	CI:	0.22,	0.49)	and	east	of	the	ORV	management	area	was	0.55	
(95%	CI:	0.47,	0.62;	Figure	2a,b).	Occupancy	probabilities	declined	
over	time	in	the	ORV	management	area	(βtrend	in	ORV	=	−.10,	95%	CI:	
−0.16,	−0.04)	but	remained	relatively	constant	across	years	east	of	
the	ORV	management	 area	 (βtrend	 east	 of	ORV	 =	 .03,	 95%	CI:	 −0.03,	
0.08;	Figure	2a).	Occupancy	probability	varied	seasonally	during	our	
study	 (Figure	2a).	Two	habitat	effects	had	consistent	 relationships	
with	occupancy	both	within	the	ORV	zone	and	east	of	the	ORV	zone.	
Deciduous	and	mixed	forest	cover	and	medium	to	high	developed	
areas	were	positively	associated	with	RABV	occupancy	 (Appendix	
S3,	Table	1).	The	probability	of	local	RABV	colonization	of	grid	cells	
increased	with	the	number	of	RABV-positive	cases	in	neighbouring	
sites	(i.e.	infection	density;	β	=	.30,	95%	CI:	0.15,	0.46;	covariate	es-
timates	for	colonization	Appendix	S3,	Table	2).
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TA B L E  1  Enhanced	rabies	surveillance	surveillance	methods	and	
sample	distributions	of	RABV-negative	and	-positive	samples	from	
2006	to	2015	in	western	Pennsylvania,	eastern	Ohio	and	northern	
West	Virginia

Surveillance method 
name # Negatives # Positives Total

Strange	acting 1,254 84 1,338

Found	dead 413 24 437

Roadkill 3,256 101 3,357

Surveillance	trapped 691 9 700

Nuisance 7,177 72 7,249

Other 1,550 22 1,572

Public	health 8,507 475 8,982

Total 22,848 787 23,635
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3.2 | Surveillance results

Generally,	 the	 strange	 acting,	 found	 dead	 and	 public	 health	 sur-
veillance	 methods	 had	 the	 highest	 RABV	 detection	 probabilities	

(Figure	3a).	The	detection	probabilities	for	found	dead,	roadkill	and	
public	health	surveillance	methods	were	considerably	higher	in	fall–
winter	compared	to	spring–summer	(Figure	3a).	The	other	methods	
were	 less	 variable	 across	 seasons.	 The	 highest	 RABV	 detection	

F I G U R E  2   (a)	Temporal	pattern	of	mean	RABV	occupancy	in	the	oral	rabies	vaccination	(ORV)	zone	(red)	and	east	of	the	ORV	zone	(blue)	
during	2006–2015	in	western	Ohio,	eastern	Pennsylvania	and	northern	West	Virginia,	with	95%	credible	intervals	shown	by	shaded	region.	
(b)	Box	plots	of	RABV	occupancy	estimates	in	the	fall	of	2015	among	grid	cells	managed	by	ORV	and	unmanaged	grid	cells	averaged	across	
time.	The	box	plot	shows	the	median	(horizontal	line),	interquartile	range	(IQR;	box),	1.5*IQR	(whiskers)	and	extreme	values	(dots)	of	the	
posterior	distributions

F I G U R E  3   (a)	Estimates	of	detection	probability	shown	by	bar	height	(with	95%	CIs)	by	surveillance	method	and	by	spring	and	summer	
(solid)	and	by	fall	and	winter	(striped).	(b)	Comparison	of	the	mean	raw	prevalence	(number	of	RABV-positive	samples/total	number	of	
samples	per	grid	cell	and	season)	and	the	estimates	of	detection	probability	by	surveillance	method	and	season	(spring–summer	and	fall–
winter).	The	black	line	shows	the	1:1	line,	estimates	below	the	line	have	a	lower	detection	probability	than	expected	based	on	the	raw	
prevalence	and	estimates	above	the	line	have	a	higher	detection	probability	than	expected	by	the	raw	prevalence



     |  2557Journal of Applied EcologyDAVIS et Al.

probability	 was	 among	 found	 dead	 animals	 in	 fall–winter	 at	 0.33	
(95%	 CI:	 0.20,	 0.48).	 The	 lowest	 RABV	 detection	 probability	 was	
among	nuisance	animals	at	any	time	of	year	at	0.02	(95%	CI:	0.01,	
0.04).	Strange	acting,	found	dead	and	roadkill	surveillance	methods	
had	higher	detection	probabilities	than	their	raw	prevalence	would	
suggest	 (Figure	3b).	However,	nuisance	and	public	health	methods	
had	 lower	detection	probabilities	 than	their	 raw	prevalence	would	
suggest	(Figure	3b).

3.3 | Elimination probability and 
surveillance planning

The	probability	of	elimination	was	estimated	for	each	season	and	
represented	the	probability	that	a	given	grid	cell	was	free	of	RABV	
infection	 during	 that	 season.	 In	 the	 last	 time	 step	 of	 this	 study	
(fall	of	2015),	the	probability	of	RABV	elimination	was	highest	in	
the	ORV	management	zone	(Figure	4a).	There	were	nine	grid	cells	
infected	 with	 RABV	 in	 the	 last	 time	 step	 and	 by	 definition	 had	

a	probability	of	elimination	equal	 to	zero.	There	was	greater	un-
certainty	about	the	RABV	elimination	status	in	areas	in	the	north	
within	the	ORV	management	area	and	in	the	southern	part	of	the	
enzootic	area	in	the	last	season	(Figure	4b).	Uncertainty	was	lower	
in	grid	cells	with	more	samples,	areas	without	samples	had	a	mean	
standard	error	of	0.09	(95%	CI:	0.07,	0.19),	areas	with	one	sample	
had	 a	mean	 standard	 error	 of	 0.05	 (95%	CI:	 0.01,	 0.12),	 an	 area	
with	10	samples	had	a	mean	standard	error	of	0.02	(95%	CI:	0.017,	
0.047).

Surveillance	data	provide	information	about	the	state	of	the	sys-
tem	and	certainty	about	that	system	state.	The	number	of	negative	
samples	needed	to	have	a	desired	probability	of	RABV	elimination	
can	be	calculated	for	a	given	set	of	conditions.	This	number	 is	de-
pendent	on	 the	probability	of	occupancy,	 the	surveillance	method	
used	 and	 the	 probability	 of	 elimination	 desired	 (Equation	 11).	 For	
instance,	the	number	of	negative	found	dead	animals	that	need	to	
be	collected	during	fall–winter	would	be	two	if	the	occupancy	prob-
ability	is	.1	and	a	95%	probability	of	elimination	is	desired	(Table	2).	

F I G U R E  4   (a)	Probability	of	elimination	
(grid	cell	freedom	from	infectious	RABV	
cases)	in	the	fall	of	2015	(end	of	study).	
(b)	Standard	error	of	occupancy	estimates	
by	grid	in	the	fall	of	2015.	Black	dots	are	
negative	samples	and	triangles	(white	in	
(a)	and	red	in	(b))	are	positive	samples	in	
this	time	step

Surveillance Method

For sites with an occupancy 
probability of .1

For sites with an occupancy 
probability of .5

Sample size 95% CI Sample size 95% CI

Strange	acting-S 5 (4,	7) 21 (16,	28)

Strange	acting-W 4 (3,	6) 16 (11,	24)

Found	dead-S 9 (5,	20) 36 (20,	80)

Found	dead-W 2 (1,	3) 7 (4,	12)

Roadkill-S 13 (10,	18) 51 (40,	69)

Roadkill-W 6 (5,	9) 25 (19,	35)

Surveillance	trapped-S 17 (8,	54) 68 (32,	214)

Surveillance	trapped-W 20 (10,	54) 77 (40,	213)

Nuisance-S 31 (24,	42) 124 (95,	167)

Nuisance-W 30 (19,	52) 118 (77,	203)

Other-S 13 (8,	26) 51 (31,	101)

Other-W 13 (8,	27) 52 (30,	108)

Public	health-S 8 (7,	9) 30 (26,	36)

Public	health-W 3 (2,	3) 11 (10,	14)

TA B L E  2  Number	of	negative	samples	
needed,	within	a	grid	cell	(100	km2)	
within	a	season,	by	surveillance	method	
and	time	of	year	(‘S’	=	spring–summer	
and	‘W’	=	fall–winter)	to	have	a	95%	
probability	of	elimination	(freedom	from	
infectious	rabies	cases	in	a	grid	cell	
in	a	given	season)	for	two	occupancy	
probabilities	(.1	and	.5)
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In	contrast,	31	negative	nuisance	animals	would	need	to	be	collected	
at	any	time	to	have	the	same	elimination	confidence	under	the	same	
conditions.	However,	if	the	occupancy	probability	was	.5	we	would	
need	seven	negative	found	dead	samples	in	fall–winter	or	124	neg-
ative	nuisance	samples	in	spring–summer	to	have	a	95%	probability	
of	elimination	(Table	2).

3.4 | Validation and bias

The	Bayesian	p-value	 for	our	model	with	 the	 full	dataset	was	 .33,	
suggesting	model	adequacy	(Royle,	Kéry,	Gautier,	&	Schmid,	2007).	
The	AUC	comparing	the	estimated	occupancy	status	with	the	occu-
pancy	probabilities	for	the	model	with	all	surveillance	types	was	0.88	
(Appendix	S4,	Table	1).	We	also	used	a	visual	comparison	to	assess	
model	fit	across	surveillance	methods	(Appendix	S4,	Figure	1).	The	
visual	assessment	makes	clear	that	the	use	of	only	one	surveillance	
type	independently	does	a	poor	job	of	capturing	the	overall	picture	
of	occupancy	on	the	landscape.	The	results	show	that	model	predic-
tion	one	time	step	beyond	the	available	data	performed	reasonably	
well,	but	patterns	in	seasonality	and	trends	were	not	well	captured	
the	 further	out	 in	 time	 that	predictions	were	made	 (Appendix	S4,	
Figure	2).	During	 the	 study,	 there	were	14	site/time	combinations	
where	elimination	would	be	declared,	one	of	those	was	found	to	be	
occupied	in	the	next	time	step,	for	an	error	rate	of	7.1%.

In	 general,	 we	 found	 that	 individual	 surveillance	 occupancy	
estimates	were	overestimated	 in	 the	ORV	management	area	com-
pared	 to	 the	 full	 dataset	 (Appendix	 S5),	 suggesting	 that	 to	 guide	
management	on	elimination	probabilities,	no	individual	surveillance	
method	provides	a	full	picture,	and	the	estimates	from	the	full	data-
set	are	more	informative	than	simply	the	sum	of	the	different	com-
ponents.	 Individual	surveillance	approach	largely	had	worse	model	
fits	(Bayesian	p-values;	Appendix	S4,	Table	1)	and	lower	AUC	values	
(Appendix	S4	Table	1)	than	the	full	dataset.

4  | DISCUSSION

By	combining	data	on	wildlife	disease	occurrence	and	the	probability	
of	 detection	 given	 sampling	 effort,	we	 can	 estimate	 the	 probabil-
ity	of	elimination	(i.e.	freedom	of	RABV)	for	every	grid	cell	at	every	
time	point	in	our	study.	When	a	disease	is	detected,	the	probability	
of	elimination	 is	 logically	zero.	When	a	disease	 is	not	detected,	an	
increasing	 number	 of	 negative	 surveillance	 samples	 improves	 cer-
tainty	that	a	site	is	free	from	that	disease	and	decreases	the	stand-
ard	error	associated	with	the	probability	estimates.	The	elimination	
probability	surface	can	help	provide	guidance	for	effective	surveil-
lance	 efforts	 by	 identifying	 areas	 where	 greater	 management	 or	
monitoring	 is	needed.	ORV	programmes	have	proved	a	useful	tool	
for	controlling,	and	in	some	cases,	eliminating	RABV	in	wildlife	res-
ervoir	species	(Freuling	et	al.,	2013;	Sidwa	et	al.,	2005;	Slate	et	al.,	
2005).	Indeed,	we	found	lower	occurrence	of	RABV	in	the	ORV-man-
aged	areas	in	our	study	area	when	compared	with	unmanaged	areas	
where	RABV	is	enzootic	in	the	raccoon	population,	suggesting	that	

ORV	management	is	effective	in	reducing	RABV	transmission	among	
raccoons.	Additionally,	the	probability	of	occupancy	decreased	with	
time	in	the	ORV	managed	area	compared	to	the	occupancy	remain-
ing	relatively	constant	 in	the	enzootic	area,	providing	support	that	
continued	ORV	management	 can	 increase	 the	 likelihood	 of	 elimi-
nating	 RABV.	We	 observed	 greater	 uncertainty	 in	 grid	 cells	with-
out	samples	near	areas	of	current	or	recent	RABV	detections.	If	we	
wanted	to	 increase	certainty	 in	 these	areas,	we	can	use	the	elimi-
nation	probability	surface	to	provide	guidance	on	where	increased	
sampling	would	provide	the	most	benefit.

Understanding	 epidemiological	 patterns	 of	 wildlife	 disease	 fa-
cilitates	management	planning	 and	 surveillance.	RABV	occurrence	
increased	 in	 areas	with	 greater	 deciduous	 and	mixed	 forest	 cover	
and	 in	areas	characterized	as	medium	to	high	development.	These	
habitats	correspond	to	areas	that	raccoons	select	(Beasley,	DeVault,	
Retamosa,	&	Rhodes,	2007;	Bozek,	Prange,	&	Gehrt,	2007);	there-
fore,	 the	 increase	 in	RABV	occurrence	may	be	 a	 simple	 proxy	 for	
raccoon	habitat	selection.	We	also	found	a	cyclic-seasonal	pattern	in	
rabies	occurrence,	consistent	with	a	prior	related	study	addressing	
RABV	circulation	 in	striped	skunk	populations	 (Pepin	et	al.,	2017).	
Seasonal	 rabies	 incidence	has	also	been	described	 in	bats	 (George	
et	al.,	2011)	relating	to	variation	in	host	contact	rates,	susceptibility,	
survival	 and	 life	 history	 (e.g.	 synchronized	parturition).	 These	 fac-
tors	may	also	relate	 to	seasonal	variation	 in	RABV	occurrence	ob-
served	 in	 raccoons	 (Duke-Sylvester,	Bolzoni,	&	Real,	2011;	Hirsch,	
Reynolds,	Gehrt,	&	Craft,	2016).	Understanding	such	patterns	can	
help	optimize	management	 strategies	 by	 vaccinating	 animals	 prior	
to	 the	 predicted	 occurrence	 of	 seasonal	 epizootics.	Modifications	
in	 the	ORV	 strategy	 in	 response	 to	 habitat-associated	 patterns	 of	
rabies	incidence	may	be	one	way	to	adapt	management	practices	for	
maximal	effect	(but	see	Beasley	et	al.,	2015).	Habitat-targeted	ERS	
has	 also	 been	 proposed	 for	 optimal	 detection	 of	 infected	 animals	
(Rees,	Bélanger,	Lelièvre,	Coté,	&	Lambert,	2011).

Wildlife	disease	sampling	often	relies	on	passive	sampling,	con-
venience	sampling	or	 targeted	sampling	but	on	a	 limited	spatial	or	
temporal	scale	(Duncan	et	al.,	2008;	Mörner	&	Beasley,	2012).	Some	
methods	of	surveillance	may	poorly	represent	a	broader	area	of	in-
terest	or	might	be	seasonally	variable.	In	our	data,	nuisance	animals	
are	more	heavily	concentrated	around	urban	and	suburban	areas	and	
interestingly	 showed	negative	biases	 in	 occupancy	 in	 these	 areas.	
When	RABV	is	present	in	developed	areas	it	is	less	likely	to	be	de-
tected	by	nuisance	reports	than	by	other	surveillance	methods.	There	
is	considerable	literature	on	biases	of	road-based	surveys	(Keller	&	
Scallan,	1999;	Roberts	et	al.,	2006).	We	found	that	occupancy	esti-
mates	from	road-killed	samples	alone	were	biased	compared	to	oc-
cupancy	estimates	from	all	samples	particularly	in	the	ORV	managed	
areas,	suggestive	of	differences	in	road	coverage,	road	speed	or	sur-
rounding	habitats	across	managed	and	unmanaged	areas.	Although	
roadkilled	samples	had	a	higher	probability	of	RABV	detection	than	
methods	such	as	surveillance-trapped	or	nuisance	sample	collection,	
there	 are	 drawbacks	 to	 exclusive	 use	 of	 this	 surveillance	method.	
Therefore,	to	use	just	one	surveillance	type	may	result	in	spatial	or	
temporal	biases	in	occupancy	estimation	and	using	a	combination	of	
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methods	is	generally	recommended	to	be	more	robust	for	estimating	
disease	presence.

Approximately	 70%	 of	 all	 surveillance	 samples	 were	 collected	
in	 the	 spring	and	 summer,	 likely	 reflective	of	periods	of	 increased	
movement	and	higher	likelihoods	of	people	and	their	pets	encoun-
tering	 raccoons	 in	 the	warmer	months	 (Glueck,	Clark,	&	Andrews,	
1988;	Hirsch,	Prange,	Hauver,	&	Gehrt,	2013).	However,	the	proba-
bility	of	detecting	RABV	was	generally	higher	in	the	fall	and	winter	
for	several	surveillance	methods.	This	seasonal	effect	was	particu-
larly	strong	for	surveillance	methods	of	found	dead	and	roadkill	ani-
mals.	Although	the	overall	number	of	samples	from	these	categories	
is	 lower	 in	 fall–winter,	 the	 detection	 of	 rabid	 animals	 was	 higher.	
This	may	reflect	how	an	increase	in	aberrant	behaviour	due	to	RABV	
(Hubbard,	1985;	Jenkins	&	Winkler,	1987)	is	more	detectable	during	
periods	of	 lower	host	population	activity.	The	 largest	seasonal	dif-
ference	was	 observed	 among	 found	 dead	 samples,	 in	which	 sam-
ples	collected	during	fall–winter	were	over	four	times	more	likely	to	
detect	RABV	 than	 samples	collected	during	 spring–summer.	Thus,	
samples	that	are	found	dead	in	fall–winter	should	be	prioritized	over	
found	dead	samples	from	other	seasons,	and	these	samples	should	
be	prioritized	for	testing.

To	eliminate	RABV,	we	need	to	understand	patterns	of	RABV	
occurrence	 to	 inform	 optimal	 management	 efforts,	 monitoring,	
and	ERS.	By	using	a	combination	of	surveillance	methods	we	aimed	
to	better	understand	the	relative	contribution	of	each	method	and	
achieve	more	robust	estimation.	Our	approach	of	a	multi-surveil-
lance	method,	dynamic	occupancy	model	is	well	suited	to	simulta-
neously	evaluate	 spatial	 and	 temporal	 influences	on	occurrence,	
while	 accounting	 for	 and	 evaluating	 detection	 probabilities	 for	
multiple	surveillance	methods.	Given	that	there	are	no	false	pos-
itives,	any	detection	of	RABV	by	any	surveillance	method	consti-
tutes	a	site	that	is	truly	occupied.	Thus,	reduced	models	(i.e.	with	
single	stream	surveillance	data)	that	failed	to	detect	RABV	under-
estimate	RABV.	By	combining	approaches	we	can	gain	strengths	
from	each	individual	surveillance	method	without	necessarily	also	
being	restricted	by	the	caveats	of	each	method.	The	full	surveil-
lance	model	also	reduces	the	overall	uncertainty	around	estimates	
which	give	us	greater	power	to	detect	when	RABV	is	truly	elimi-
nated	and	not	 just	that	there	was	a	failure	to	detect	 it—a	critical	
distinction	 for	 achieving	 long-term	management	objectives.	 This	
approach	 is	 particularly	 useful	 for	monitoring	of	wildlife	 disease	
in	general,	as	many	wildlife	disease	surveillance	make	us	of	a	com-
bination	 of	 opportunistic,	 convenience	 and	 targeted	 sampling	
approaches.
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