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Introduction

Abstract

Passive acoustic methods are increasingly used in biodiversity research and
monitoring programs because they are cost-effective and permit the collection
of large datasets. However, the accuracy of the results depends on the bioacou-
stic characteristics of the focal taxa and their habitat use. In particular, this
applies to bats which exhibit distinct activity patterns in three-dimensionally
structured habitats such as forests. We assessed the performance of 21 acoustic
sampling schemes with three temporal sampling patterns and seven sampling
designs. Acoustic sampling was performed in 32 forest plots, each containing
three microhabitats: forest ground, canopy, and forest gap. We compared bat
activity, species richness, and sampling effort using species accumulation curves
fitted with the clench equation. In addition, we estimated the sampling costs to
undertake the best sampling schemes. We recorded a total of 145,433 echoloca-
tion call sequences of 16 bat species. Our results indicated that to generate the
best outcome, it was necessary to sample all three microhabitats of a given for-
est location simultaneously throughout the entire night. Sampling only the for-
est gaps and the forest ground simultaneously was the second best choice and
proved to be a viable alternative when the number of available detectors is lim-
ited. When assessing bat species richness at the 1-km” scale, the implementation
of these sampling schemes at three to four forest locations yielded highest labor
cost-benefit ratios but increasing equipment costs. Our study illustrates that
multiple passive acoustic sampling schemes require testing based on the target
taxa and habitat complexity and should be performed with reference to cost-
benefit ratios. Choosing a standardized and replicated sampling scheme is par-
ticularly important to optimize the level of precision in inventories, especially
when rare or elusive species are expected.

birds (Wimmer et al. 2013). Apart from being noninva-
sive and cost-effective, acoustic sampling is superior
to other methods, such as capturing, which is difficult to

Species richness is a widely used variable in ecological
research (Purvis and Hector 2000) and a key indicator of
biological diversity in monitoring programs (Yoccoz et al.
2001). However, a species count often underestimates the
true number of species present (Kery and Schmid 2006),
in particular, in rare, elusive, and nocturnal taxa.

In the past three decades, acoustic survey methods have
become increasingly popular in faunistic biodiversity
studies. Today, a wide range of terrestrial animals
that produce sounds may be acoustically sampled, most
prominently bats (Obrist et al. 2004), insects (Chesmore
and Ohya 2004), amphibians (Huang et al. 2009). and
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implement in cluttered habitats as forests and tends to
underestimate species richness (MacSwiney et al. 2008).
With passive acoustic sampling techniques (researcher
absent), considerable quantities of data about species
presence, abundance, and species behavior at large
spatiotemporal scale can be collected. Thus, acoustic
methods can be used to estimate population density
(Marques et al. 2013), study animal behavior (Lynch
et al. 2013), or assess and track changes in species com-
position in a context of habitat modification and climate
change (Blumstein et al. 2011).

© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
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Recent technological advancements have allowed acous-
tic studies of bats to be more effective and accurate.
Employing new technologies, several new bat detectors
have emerged which are increasingly sensitive and include
omnidirectional microphones, thus improving overall bat
detection (Britzke et al. 2013). In parallel with improve-
ment in ultrasonic detectors, different types of software
for bat species identification based on specific algorithms
have been developed to deal with the interspecific conver-
gence in bat call design and intraspecific structural varia-
tion (Vaughan et al. 1997; Russo and Jones 1999; Parsons
and Jones 2000; Obrist et al. 2004; Preatoni et al. 2005).
While some applications help ecologists to analyze bat
echolocation calls with automated extraction of call fea-
tures, others allow an automatic classification and identi-
fication of bat echolocation call recordings by statistically
associating unknown calls with reference calls. Despite
constantly improving methods for bat detection and spe-
cies identification, extrinsic factors may still bias the
acoustic sampling. These factors include habitat features
such as cluttered forests which induce bats to change the
echolocation call structure and reduce call intensity (Brig-
ham et al. 1997; Schnitzler and Kalko 2001), thereby
reducing detection and making species identification
more difficult.

To enhance acoustic sampling in forests, effects of posi-
tion, orientation, and number of detectors on bat detec-
tion must be accounted for. While Weller and Zabel
(2002) highlighted the importance of deploying detectors
well above ground level and orienting microphones
toward cluttered space, Duchamp et al. (2006) showed
the need to laterally deploy at least two detectors in heter-
ogeneous forest stands. The vertical stratification of bat
activity in forests has been demonstrated for communities
in North America (Kalcounis et al. 1999), Australia
(Adams et al. 2009), and Europe (Miiller et al. 2013).
This means that sampling forests require detectors at both
the ground layer and higher strata up to the canopy (Brit-
zke et al. 2013). Despite evidence that bats use three-
dimensions of forest space to forage (Jung et al. 2012),
no acoustic sampling scheme has been specifically evalu-
ated for the ability to inventory forest bats. Given that
forests provide both roosting and foraging habitats for a
majority of bat species (Dietz et al. 2007), there is strong
incentive for scientists, wildlife managers, and agencies to
know the type of acoustic sampling methods that best suit
project-specific goals regarding forest bat inventories.

The aims of our study were (1) to compare activity
patterns of bat guilds among forest microhabitats; (2) to
evaluate the utility of different acoustic sampling schemes
(i.e., number of bat species detected) and effectiveness
(i.e., number of nights invested) by testing different sam-
pling designs (i.e., spatial positions of the bat detectors)

© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
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associated with various temporal sampling patterns (i.e.,
time windows to sample during a night); and (3) to assess
the time and cost of assessing bat species richness in for-
ests by implementing the best sampling schemes at differ-
ent forest locations. Forest microhabitat preferences of
bats depend on foraging strategy and ecomorphological
traits (Norberg and Rayner 1987). Consequently, we
hypothesized to detect more species when employing a
sampling protocol that takes vertical and horizontal strati-
fication of forest habitats into account. Furthermore, as
bat activity varies temporally during the night and among
species (Hayes 1997; Skalak et al. 2012), we hypothesized
to detect more species by extending the sampling pattern
from 4 h to full-night recordings. Finally, we hypothe-
sized to find a trade-off between material and labor costs
depending on the spatiotemporal requirements of the
respective sampling schemes.

Material and Methods

Study area and site selection

The study was conducted in the Canton of Aargau
(47°14'—47°62'N, 7°71'-8°46'E; 1404 km?), in northwest-
ern Switzerland. The area lies in the biogeographical
regions of the Swiss lowlands and Jura Mountains, with
altitudes ranging from 260 to 910 m a.s.l. More than
one-third of the area (37%) is covered by mixed decidu-
ous and coniferous forests, of which 80% are managed
for wood production and the remaining 20% for other
purposes, such as biodiversity conservation or recreation.
The most abundant tree species are Fagus sylvatica (32%),
Picea abies (26%), and Abies alba (14%) (Departement
Bau, Verkehr und Umwelt 2010).

We implemented a stratified random sampling design
(Fig. 1) to select eight cells of 1 km?® (mean distance
between cells: 13.6 km), based on the national mapping
grid. We considered only cells with at least 50% forest
cover, as delineated by the digital mapping product VEC-
TOR25 (Swisstopo 2013), and randomly selected cells
with respect to the altitudinal gradient. To avoid potential
biases arising from foraging areas other than forests, can-
didate cells were at least 100 m from any bodies of water.
In each cell, we randomly selected four plots that were
entirely located within forests. In each plot, we identified
three sites each representing a particular microhabitat:
two were located in the forest interior: (1) the forest
ground and (2) the respective canopy above; and (3) one
in the center of a nearby forest gap.

To minimize confounding edge effects, we selected sites
with minimal distances of 50 m and 20 m from forest
edges and forest roads, respectively. Within the 1-km?
cells, plots were 145-800 m (mean 429 m) apart, and
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Figure 1. Stratified random sampling design: sampling sites (e),
within plots (o) in a sample of km? cells (o) located in the Canton of
Aargau, northwestern Switzerland (not to scale).

within plots, forest and gap sites were located 46-140 m
(mean 81 m) from each other. Only deciduous and
mixed forests were considered. The area of forest gaps
ranged from 450 to 3950 m? (mean 1318 m?).

Acoustic sampling

To record bat echolocation calls, we used 12 ultrasound
detectors (Batlogger; Elekon AG, Lucerne, Switzerland).
Detectors contained water-resistant and omnidirectional
microphones sensitive from 10 to 150 kHz (+5 dB). Each
detector was placed in a Strongbox (Elekon AG, Lucerne,
Switzerland), which provided protection from weather,
and augmented energy autonomy to about 135 h using
three Li-ion cells.

Bat activity was recorded on 71 full nights between 4
June and 29 August 2013. No sampling was undertaken
on nights with rainfall and minimum temperatures below
7°C. Detectors were programmed to record sounds auto-
matically between 21:30 and 05:30, triggered by tonal
ultrasound signals. Using 12 ultrasound detectors, 1 km?
could be sampled per night (Fig. 1). We sampled each
square km for three or four consecutive nights before
moving to the next square km. The detectors were ran-
domly switched between sites after each rotation to avoid
possible bias. Each cell was sampled 6-12 nights during
the field session.

In the forest ground and the forest gap, detectors were
mounted on a pole 1.35 m above the ground. For the
canopy sites, we selected deciduous trees representative of
the forest stand and used a slingshot, ropes, and a pulley
system to install the detectors in the upper canopy. The
height of the detectors ranged from 13.5 to 30 m (mean
18.9 m), which corresponds to 85% of the mean stand
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(30 x 30 m) height, as calculated from a digital surface
model (C. Ginzler, pers. comm.).

Echolocation analysis

To identify bat echolocation calls to the species, we used
the software BatScope (Boesch and Obrist 2013). Bat-
Scope cuts every recorded series of echolocation calls
(here after simply termed “sequence”) into single calls
and processes them into spectrograms (0.31 kHz x

0.16 ms resolution), from which it extracts 23 numeric
variables. Based on three different classification algorithms
— support vector machine (SVM), K nearest neighbor
(KNN), and quadratic discriminant analysis (QDA) — calls
are then classified to species, taking into consideration
the respective variable values from 19,636 reference calls
from 28 European species (Obrist et al. 2004). The cor-
rect classification rate of calls reaches 95.7% when only
considering calls classified to the same species by all three
classifiers. By doing so, 23.6% of all calls are being
rejected from classification as being too ambiguous to
identify (see Table 1 in Boesch and Obrist 2013).

After automatic classification of calls, we performed a
semiautomatic identification of bat sequences with differ-
ent filter combinations (e.g., the sequence contains >10
calls, and >80% of the calls are classified with >70% con-
fidence to a single species) to associate sequences to the
best taxonomic level possible: species, species groups,
genus, and genus groups.

A manual control with BatScope and RavenPro (Charif
et al. 2004) was used (1) at the call level to avoid misclas-
sification of background noises to bat echolocation calls
and to bring in expert knowledge to distinguish obvious
calls (e.g., social calls); (2) at the sequence level to test
each filter for errors in the semiautomatic verification
process. To that end, we manually verified 10% of the
sequences that were automatically classified to species
with easy discernibility (e.g., Pipistrellus pygmaeus, Pipi-
strellus  pipistrellus, Myotis myotis) and 33% of the
sequences from species that are easily confused with oth-
ers (e.g., Pipistrellus nathusii, Pipistrellus kuhlii or Myotis
brandtii, Myotis mystacinus, etc.).

As echolocation calls are similar between some species
(Obrist et al. 2004), we grouped (1) Plecotus auritus and
Plecotus austriacus into Plecotus sp.; (2) Nyctalus noctula
and Nyctalus leisleri into Nyctalus sp.; and (3) Eptesicus
serotinus and Eptesicus nilssoni into Eptesicus sp. We further
classified bats into three different guilds, according to their
clutter resistance and echolocation range (Schnitzler and
Kalko 2001): short-range echolocators (SRE), middle-range
echolocators (MRE), and long-range echolocators (LRE)
(for details, see Frey-Ehrenbold et al. 2013).

© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
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Table 1. Number of sequences per bat species recorded in each microhabitat.

Forest gap Forest ground Canopy Total

Species Guild  No. of sequences % No. of sequences % No. of sequences % No. of sequences %
Eptesicus spec. LRE 241 0.46 22 0.05 26 0.07 289 0.22
Hypsugo savii MRE 7 0.01 0 0.00 3 0.01 10 0.01
Myotis brandtii SRE 33 0.06 33 0.08 29 0.08 95 0.07
Myotis bechsteinii SRE 1 0.00 2 0.00 3 0.01 6 0.00
Myotis daubentonii SRE 211 0.40 570 1.36 280 0.79 1061 0.82
Myotis emarginatus SRE 47 0.09 228 0.54 137 0.38 412 0.32
Myotis myotis SRE 221 0.42 578 1.38 24 0.07 823 0.63
Myotis mystacinus SRE 19 0.04 132 0.32 19 0.05 170 0.13
Myotis nattereri SRE 4 0.01 13 0.03 0 0.00 17 0.01
Nyctalus spec. LRE 223 0.42 13 0.03 13 0.04 249 0.19
Pipistrellus kuhlii MRE 1420 2.70 436 1.04 413 1.16 2269 1.75
Pipistrellus nathusii MRE 8954 17.04 1271 3.04 773 2.17 10,998 8.46
Pipistrellus pipistrellus ~ MRE 41,111 78.24 38,402 91.76 33,827 94.94 113,340 87.17
Pipistrellus pygmaeus ~ MRE 38 0.07 130 0.31 75 0.21 243 0.19
Plecotus spec. SRE 13 0.02 20 0.05 8 0.02 41 0.03
Vespertilio murinus LRE 4 0.01 0 0.00 0 0.00 4 0.00
Total 52,547 41,850 35,630 130,027

LRE, long-range echolocators; MRE, middle-range echolocators; SRE, short-range echolocators.

Statistical analyses

All statistical analyses were undertaken using R 2.15 (R
Development Core Team 2013). We assessed the activity
of the three guilds by taking into account sequences from
all taxonomic levels assignable to a guild. As a single bat
may forage around a microphone for extended periods,
we quantified activity by counting the number of 5-min
intervals containing sequences of a given species per
night. Thus, the maximum activity per night for a given
species was 96 (8 h x 60 min/5 min). As data on activity
were not normally distributed even after transformations
but followed a Poisson distribution, we used generalized
linear mixed models (GLMMs) (function glmer, R pack-
age Ime4) with a Poisson distribution to analyze the dif-
ferences between the guilds’ activities as a function of
microhabitat. Ambient temperature and type of micro-
habitat were considered as fixed effects, whereas the num-
ber of sites (32 per microhabitat) and nights (6 to 12)
were implemented as random effects to avoid pseudo-
replications. We applied a stepwise regression method to
select the best models using the Akaike information crite-
rion (Burnham and Anderson 2004), choosing the model
with the fewest parameters when models were considered
equivalent (4AIC < 2).

We estimated bat species richness and evaluated the
minimum sampling effort required to achieve a complete
inventory of bats using species accumulation curves (Mo-
reno and Halffter 2000; Gotelli and Colwell 2001). For
species grouped together in the same genus (i.e., Plecotus

© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

sp., Nyctalus sp., and Eptesicus sp.), a group was consid-
ered to be one taxon in the analysis. We used the func-
tion specaccum in the R package vegan to calculate curves
for single microhabitats and for combinations of micro-
habitats belonging to the same plot, thereby evaluating
three different temporal sampling patterns: (1) recording
over the full night, (2) recording for only the first 4 h
after sunset (21:30-01:30), and (3) recording for 4 h split
into two sessions, the first after sunset (21:30-23:30) and
the second before sunrise (03:30-05:30). The number of
sampling nights was considered as the sampling effort.
Sampling order was randomized 1000 times to avoid pos-
sible order specific bias and to produce smooth rarefac-
tion curves. To account for potentially unequal numbers
of sampling repetitions (e.g., due to low temperature)
and at the same time allow for extrapolating and compar-
ing species accumulation curves, we fitted the Clench
equation (Soberon and Llorente 1993) to our data:

S(t) = at/(1+ bt) (1)

where S(t) is the predicted number of species at sampling
effort t, a is the rate of increase at the beginning of sam-
pling, and b is a parameter related to the shape of the
accumulation of new species during the sampling. The
Clench equation is appropriate to use when the probabil-
ity of adding new species decreases with the number of
species already detected, but increases over time (Soberon
and Llorente 1993). Model parameters a and b were
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obtained by fitting nonlinear least square procedures
(function nls) using the R package stats. Finally, we fitted
species accumulation curves for distinct microhabitats
and for combinations of microhabitats for the three
temporal sampling patterns, by averaging the correspond-
ing model’s parameters. Because reaching 100% species
richness in forests requires a large sampling effort
(Moreno and Halffter 2000), the sampling effort was
considered satisfactory when 90% of the estimated species
richness (asymptote of the curve), occurring either at the
site level or at the plot level, was reached (Skalak et al.
2012).

To establish the number of sampling plots required for
a complete species inventory at the 1-km?® scale, we per-
formed the same procedure using data resulting from the
best sampling schemes to calculate the species richness
occurring at the plot level. We built species accumulation
curves for different numbers of sampling plots and con-
sidered the number of nights as the sampling effort.

Sampling costs estimation

Considering only the number of sampling nights as effort
when using passive acoustic methods drastically underes-
timates the total effort invested. We thus compared the
time and labor cost required for implementing the best
sampling schemes in different sampling plots to assess bat
species richness at the 1-km?® scale. We added equipment
costs to determine total costs. We associated the number
of nights (N,) and the number of plots (N,) required in
the sampling schemes previously evaluated to be optimal
to (1) the time related to the fieldwork (T, (see details in
Table S1, Supporting Information) and (2) the time
required for the echolocation analysis (T,). To estimate
T,, we calculated the mean number of sequences recorded
per night and per plot (X;) according to the sampling
scheme wused. Then, we estimated the average time
required to identify a certain number of bat sequences to
the species level, by quantifying the mean number of
workdays required for three users of BarScope. Here, we
took into account the time needed for the manual species
identification and for developing filters, which allowed for
automatic identification. The results were converted into
time/sequence (A). Finally, we measured the total time
invested (T,):

T, = Tf.N,. N, + T,.N,.N,withT, = AX,  (2)

Given an average salary for skilled technicians of 50 €
per hour and for scientific experts of 100 € per hour, we
estimated the labor costs of forest bat inventories, and the
total cost, by adding the cost of detectors (Batlogger:
1645 €/unit).
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Results

Using 12 detectors during 71 nights at 96 sampling sites,
we recorded 145,433 bat sequences containing a total of
2,064,188 bat calls. We identified 129,671 sequences
(89.2%) to the species level, 10,948 sequences (7.5%) to a
species group, 4128 sequences (2.8%) to the genus level,
and 168 sequences (0.1%) to a genus group. A total of
518 sequences contained only one bat call, or calls that
were unidentifiable. Thus, we assigned them to the order
Chiroptera (0.4%).

In total, 16 of 20 bat species recorded for the Canton
of Aargau were detected in our study (Table 1). Among
these 16 bat species, three belonged to the LRE guild, five
to the MRE guild, and eight to the SRE guild. The most
frequent species identified belonged to the genus Pipistrel-
lus, with 87.2% of all sequences assigned to Pipistrellus
pipistrellus, 8.5% to Pipistrellus nathusii, and 1.8% to Pipi-
strellus kuhlii. As Pipistrellus pipistrellus was present in all
sites and dominant in each microhabitat, we excluded this
species from the analyses of activity to have a better
understanding of the other species belonging to the MRE
guild.

Bat activity

The activity of the LRE and the MRE guilds was best
explained by models that included the effect of the micro-
habitat (Table 2). While the activity of the SRE guild did
not differ among microhabitats, the LRE and MRE guilds
showed a preference for forest gaps (Fig. 2). Within
guilds, activity did not differ between the forest ground
and the canopy.

Species richness

Site-specific estimates of bat species richness proved high-
est in gaps, followed by forest ground, and canopy
(Fig. 3; Appendix S1, Supporting Information). At the
plot level, we found bat species richness to be highest
when all three sites were combined (Fig. 4). However,
when considering only two sites, the best site combina-
tion for assessing bat species richness within a plot was
the “Forest gap + Forest ground” combination, in which
we recorded 90% of the full species assemblage, albeit
with considerable effort of 33 sampling nights.

Bat species richness increased when the sampling dura-
tion was extended, regardless of the microhabitats or
their combination (Figs. 3 and 4). Full-night sampling
was necessary to make a good estimate of the number of
species present. Further, by comparing 4-h sampling
(first half of the night) to the double 2-h sampling (2 h
after dusk and 2 h before dawn), we found that species

© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
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Table 2. Predictors of GLMMs with AIC explaining differences in activity per guild.

LRE MRE SRE
Models No. of parameters AIC AAIC AIC AAIC AIC AAIC
Temperature + microhabitat 6 699.5 0.0 8302.4 0.3 5259.4 0.1
Microhabitat 5 701.2 1.7 8302.0 0.0 5267.7 8.4
Temperature 4 749.0 49.5 8344.9 42.8 5259.0 0.0

Guilds: LRE, long-range echolocators; MRE, middle-range echolocators; SRE, short-range echolocators. Bold numbers indicates best fitting models

for each guild.
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Figure 2. Activity measures of different bat guilds (LRE: long-range
echolocators, MRE: middle-range echolocators without P. pipistrellus,
SRE: short-range echolocators) for the three microhabitats (GR: forest
ground, CA: canopy, and GA: forest gap). ***p < 0.001. NS, not
significant.

richness was on average higher during the first part of
the night (Fig. 3).

Sampling effort

The minimum sampling effort required to record 90% of
the species occurring at a site varied between the micro-
habitats and the temporal sampling patterns (Fig. 3). We
found that the sampling effort needed was lowest in the
forest gap (17 nights), followed by the forest ground (18
nights), and the canopy (20 nights). Only with full-night
sampling was it possible to reach 90% of the total species
richness.

To reach 90% of the total bat species richness at the
plot scale, only two sampling schemes proved to be ade-
quate: full-night sampling either in the three microhabi-
tats (12 nights) or in the “Forest gap + Forest ground”
combination (33 nights) (Fig. 4). With the other schemes,

© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

90% of the total bat species richness could not be
achieved or required an effort of more than 50 nights.

Sampling costs

Based on the ideal sampling scheme at the plot scale, we
estimated the number of plots required to assess bat spe-
cies richness at the square km scale and the correspond-
ing temporal and financial resources needed. We found
two trends (Table 3). First, when increasing the number
of plots, the time for field management and analysis
decreased due to a lower number of sampling nights
required (Fig. 5). Second, considering material costs, the
costs turn out to be very similar between the different
scenarios. As sampling a single plot would never lead to
reaching the required total species richness, the costs for
this scenario were not calculated. By considering together
the labor costs with the detector costs, we found that
about 37 000 € (£1465 €) are needed when sampling in
the three microhabitats regardless of the number of plots
and 34 000 € (£633 €) when considering only the “Forest
gap + Forest ground” combination.

Discussion

We found that using passive acoustic methods to accurately
register species presence depends on the temporal and spa-
tial replication of a standardized sampling technique. Stud-
ies that restrict their surveys to a particular time window
during the night or a particular forest layer or microhabitat
(e.g., forest gap) will likely underestimate true species rich-
ness. The observed species richness deviates from the true
species richness N due to each species’ detection probability
P, which varies among the species present (MacKenzie and
Kendall 2002). With temporal and spatial replication, we
strived to compensate for detection probabilities that differ
between species. It is well known that detection probabili-
ties of bats are less than one: deviations usually stem from
observer biases, weather conditions, species characteristics,
and abundances, and habitat variability (Meyer et al.
2011). Observer biases can be excluded in our study
because we used an automated technique (MacSwiney et al.
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Figure 3. Averaged bat species accumulation curves by microhabitat (n = 32) for the full-night sampling (e), the first 4 h sampling (o), and
double 2-h sampling after sunset and before sunrise (A). Horizontal doted lines represent the species richness threshold of 90% (see Material
and Methods), and vertical dotted lines, the corresponding number of nights required (sampling effort). Grey bars correspond to the numbers of
nights invested in the field. Parameters of the curves are described in the Table S2, Supporting Information.
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Figure 4. Averaged bat species accumulation curves for different temporal sampling patterns as function of sampling nights in different
combinations of two microhabitats: “Forest gap + Forest ground” (e), “Forest gap + Canopy” (o), and “Forest ground + Canopy” (A). Open
circles (o) represent the combination of all three microhabitats. Horizontal doted lines represent the threshold of 90% (see Material and
Methods), and vertical dotted lines, the corresponding number of nights (sampling effort) when sampling in four (left line) or three plots (right
line), respectively. Grey bars correspond to the range of number of nights invested in the field. Parameters of the curves are described in the

Table S3, Supporting Information.

2008). The influence of cold and rainy weather on the
activity of bats was controlled using only data from dry
nights with minimum temperature at or above 7°C. Habitat
variability was accounted for by the sampling design within
a plot and the replication within a square km. Thus, we
assume that the pronounced differences in species abun-
dances we calculated, rather than their detectability, have
had the dominant effect on detecting species. We believe
that our observed species richness value is a good proxy for
the true resident species richness (excluding sporadic
migrants), as we were able to record 16 species on only
1.5% of the total forested study area in the canton of Aar-
gau, for which, in total, 20 species have been documented
over the last decades.
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Where to sample bats in forests? — Selection
of sampling design

Our results provide ample evidence that the three-dimen-
sional structure of forests must be sampled to adequately
record bat communities. These findings corroborate Jung
et al. (2012), which show that bat species exhibit micro-
habitat preferences depending on their echolocation type
and wing morphology (Norberg and Rayner 1987). As we
showed with the activity measurement of bat guilds, for-
est gaps constitute an important microhabitat for the
majority of bat species foraging on aerial insects: bats
with high flight speed, low maneuverability (e.g., Nyctalus
sp.) known to forage in open space or in open forests,

© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.



J.S. P. Froidevaux et al. Optimizing Acoustic Bat Sampling

Table 3. Time investment and costs for different sampling schemes to reach 90% of the estimated bat species richness occurring at the km?
scale in a forest landscape.

No. of No. of nights Field Time for Labor Detector Total
Sampling scheme plots required management (h) analysis (h) cost (€) cost (€) cost (€)
GA + GR + CA Full night [2069] 1 - - - - - -

2 M1 14.8 252.9 26,030 9870 35,900

3 6 9.6 206.9 21,170 14,805 35,975

4 4 6.9 183.9 18,735 19,740 38,475
GA + GR Full night [1524] 1 - - - - - -

2 16 15.2 270.9 27,850 6580 34,430

3 9 8.7 228.6 23,295 9870 33,165

4 6 7.2 203.2 20,680 13,160 33,840

GA, Forest gap; GR, Forest ground, CA, Canopy.

The mean number of bat sequences recorded per night and per plot is given in square brackets. Field management included different field aspects
(Table S1, Supporting Information) and was based on the assumption that each field session lasts two nights. Costs are based on salaries of €50/h
for fieldwork and €100/h for acoustic analyses of the respectively recorded sequences.
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Figure 5. Averaged bat species accumulation curves for the best sampling schemes as function of sampling nights for different numbers of
sampling plots to implement in a 1-km? cell: one plot sampled (o), two plots sampled (o), three plots sampled (A), and four plots sampled (o).
Horizontal doted lines represent the threshold of 90% (see Material and Methods) of the averaged total species richness occurring in a 1-km?
cell, and vertical dotted lines, the corresponding number of nights (i.e., the required sampling effort). Grey bars correspond to the number of

nights invested in the field. Parameters of the curves are described in the Table S4, Supporting Information.

used forest gaps like some species known to be edge spe-
cialists (e.g., Pipistrellus sp.) (Jung et al. 2012; Mehr et al.
2012). On the forest ground, however, bat species with
low flight speed and high maneuverability prevail (e.g.,
Myotis sp.) (Mehr et al. 2012; Miller et al. 2013), of
which most are gleaning foragers (Schnitzler and Kalko
2001). Finally, both edge specialists and forest specialists
forage in the canopy (Miiller et al. 2013). For bats, the
canopy provides foraging opportunities along a horizontal
edge shaped by the roughness of the canopy (Jung et al.
2012).

Although sampling in all three microhabitats produced
the best results, surprisingly, sampling a combination of
only two microhabitats, the forest gap and the forest
ground, produced results similar to the ideal design,
enabling the recording of 90% of the total species richness

© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

with a marginal increase in effort. As expected, there was
a high complementarity of species recorded in the forest
gap and those either in the forest ground or in the can-
opy. However, in contrast to our expectations, we found
a high similarity between the species detected in the can-
opy and those in the forest ground. This cannot be
explained by a possible bias of the detection because, even
though we installed the detectors in the upper part of the
canopy and not above, the high sensitivity of the detec-
tors (Adams et al. 2012) allowed us to detect both species
foraging within the canopy and species foraging on the
ground (e.g., forest specialist), as well as those foraging
above it (e.g., edge specialists and open space foragers)
(Adams et al. 2009; Miiller et al. 2013). The main reason
for this could arise from our canopy settings: the neigh-
boring density of vegetation was sometimes relatively
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high, reducing maneuverability, and thus, the presence of
bats in the canopy.

When to sample bats in forests? — Choice of
temporal sampling pattern

Acoustic sampling of bats is commonly conducted in
either of three different ways: (1) at dusk only; (2) at
dusk and dawn with a break in between; or (3) for the
entire night. When sampling is performed during parts of
the night, the recording time window usually targets the
period with peak bat activity, thus assuming to record the
majority of species. However, the temporal variation of
bat activity is habitat and species-specific (Hayes 1997) as
is the time of the emergence of bats (Jones and Rydell
1994). Skalak et al. (2012) recently showed that sampling
the full night was essential to cover the bimodal peaks of
bat activity, but also to record rare species having low
detection probabilities. Our results fully support these
findings. We demonstrated that independent of micro-
habitat, sampling for the entire night resulted in the max-
imum number of bat species recorded. This means that
bat species richness is underestimated by sampling for
only 4 h per night, even when taking into account the
general bimodal peaks of bat activity.

Cost-benefit considerations

Efforts to track changes in biodiversity are subject to the
trade-off between the effort invested and the gain of
information (Duelli and Obrist 1998). Despite the fact
that sampling costs are a crucial argument for optimizing
spatiotemporal samplings, few studies have monetarily
valued the type of sampling used (Gardner et al. 2008).

Species richness estimates increase with sampling effort
up to reaching an asymptotic level representing true total
species richness present. In our study, increasing the
number of plots from three to four in a forest inventory
at the 1-km? scale only marginally increased the estimated
total species richness (Fig. 5; Table S4), which leads us to
the conclusion that we have sampled the complete com-
munity. However, increasing the spatial replication to
four forest locations using the best sampling scheme
allowed us to reduce the number of sampling nights and
thus to save time and money to estimate bat species rich-
ness. This likely reflects higher spatial than temporal vari-
ance of bat activity among events. Nevertheless, by
adding the costs of devices required, the total costs tend
to be balanced. There is a trade-off between the number
of plots to sample for decreasing the time and consecu-
tive costs spent in the field and for the analysis, and
the number of detectors to implement, known to be
expensive.
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By explicitly accounting for the time and the costs of
each step induced by the sampling effort required, we
demonstrate that the processing time required to identify
bat sequences remains the major constraint of the passive
acoustic method. As for birds (Wimmer et al. 2013), spe-
cies identification is challenging and time-consuming,
despite the recent emergence of software for automated
classification. To date, no software is robust enough to
identify at the species level all bat sequences collected in
the field. In this study, 10.8% of the total data recorded
(i.e., 15,762 sequences) were not identified to species,
leading to a slight underestimation of species richness
(e.g., the two Eptesicus species present in Switzerland were
grouped to only one taxa; numerous Myotis bat sequences
were identified as species complexes). Efforts to improve
the performance and availability of such software would
substantially alleviate inventory costs and could leverage
automated acoustic bat recording into the realm of broad
monitoring programs. Finally, we also highlight the sub-
stantial effort required to assess bat species richness in
forest habitat, even when deploying a large number of
detectors. Due to the scarcity and/or the low detectability
of some gleaning species (Meyer et al. 2011), a complete
inventory is very demanding.

Conclusion and recommendations

Adopting an effective sampling protocol to assess true
species richness in a complex environment is a challenge,
but at the same time it is a prerequisite for monitoring
trends of biodiversity across space and time (Yoccoz et al.
2001). Our findings constitute an important step toward
successfully implementing protocols that provide accurate
inventories of bats. This is important given that they are
known to be valuable bioindicators in times of global
change (Jones et al. 2009). We propose the following rec-
ommendations to optimize acoustic sampling of bats in
forests: (1) sample over the full night to achieve the most
accurate estimate of species richness; (2) sample repeat-
edly in different forest microhabitats (forest gap, ground
and canopy) reflecting the 3-D forest space used by bats;
and (3) sample different forest locations. Taken together,
this will allow us to determine species richness with less
effort and at lower cost. Our approach is applicable to
other fields such as ornithology (Digby et al. 2013), where
passive acoustic methods are beginning to be recognized
for their strengths and effectiveness to record rare species
or species with low detectability.
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Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Appendix S1. Species accumulation curve built by averag-
ing Clench model parameters (a and b) of each species
accumulation curve per site (grey points), exemplified for
the forest gap. Dotted lines represent standard errors.
Table S1. Time invested for the field management
required to sample one forest plot.

Table S2. Description of Clench equation parameters for
single microhabitats in relation to temporal sampling pat-
terns: a is the slope at the beginning of the sampling, b is
a parameter related to the shape of the accumulation of
new species during the sampling, ¢ is the sampling effort,
a/b equals the asymptotic species richness.

Table S3. Description of Clench equation parameters for
combinations of micro-habitats in relation to temporal
sampling patterns: a is the slope at the beginning of the
sampling, b is a parameter related to the shape of the
accumulation of new species during the sampling, t is the
sampling effort, a/b equals the asymptotic species rich-
ness.

Table S4. Description of Clench equation parameters for
the best sampling schemes found for km? cells in relation
to the number of plots: a is the slope at the beginning of
the sampling, b is a parameter related to the shape of the
accumulation of new species during the sampling, ¢ is the
sampling effort, a/b equals the asymptotic species rich-
ness.
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