58 research outputs found

    A randomized double-blind placebo-controlled trial to investigate the effects of nasal calcitonin on bone microarchitecture measured by high-resolution peripheral quantitative computerized tomography in postmenopausal women — Study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone microarchitecture is a significant determinant of bone strength. So far, the assessment of bone microarchitecture has required bone biopsies, limiting its utilization in clinical practice to one single skeletal site. With the advance of high-resolution imaging techniques, non-invasive in vivo measurement of bone microarchitecture has recently become possible. This provides an opportunity to efficiently assess the effects of anti-osteoporotic therapies on bone microarchitecture. We therefore designed a protocol to investigate the effects of nasal salmon calcitonin, an inhibitor of osteoclast activity, on bone microarchitecture in postmenopausal women, comparing weight bearing and non-weight bearing skeletal sites.</p> <p>Methods</p> <p>One hundred postmenopausal women will be included in a randomized, placebo-controlled, double-blind trial comparing the effect of nasal salmon calcitonin (200 UI/day) to placebo over two years. Bone microarchitecture at the distal radius and distal tibia will be determined yearly by high-resolution peripheral quantitative computerized tomography (p-QCT) with a voxel size of 82 μm and an irradiation of less than 5 μSv. Serum markers of bone resorption and bone formation will be measured every 6 months. Safety and compliance will be assessed. Primary endpoint is the change in bone microarchitecture; secondary endpoint is the change in markers of bone turnover.</p> <p>Hypothesis</p> <p>The present study should provide new information on the mode of action of nasal calcitonin. We hypothezise that - compared to placebo - calcitonin impacts on microstructural parameters, with a possible difference between weight bearing and non-weight bearing bones.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00372099</p

    Effectiveness of bisphosphonates on nonvertebral and hip fractures in the first year of therapy: The risedronate and alendronate (REAL) cohort study

    Get PDF
    INTRODUCTION: Randomized clinical trials have shown that risedronate and alendronate reduce fractures among women with osteoporosis. The aim of this observational study was to observe, in clinical practice, the incidence of hip and nonvertebral fractures among women in the year following initiation of once-a-week dosing of either risedronate or alendronate. METHODS: Using records of health service utilization from July 2002 through September 2004, we created two cohorts: women (ages 65 and over) receiving risedronate (n = 12,215) or alendronate (n = 21,615). Cox proportional hazard modeling was used to compare the annual incidence of nonvertebral fractures and of hip fractures between cohorts, adjusting for potential differences in risk factors for fractures. RESULTS: There were 507 nonvertebral fractures and 109 hip fractures. Through one year of therapy, the incidence of nonvertebral fractures in the risedronate cohort (2.0%) was 18% lower (95% CI 2% – 32%) than in the alendronate cohort (2.3%). The incidence of hip fractures in the risedronate cohort (0.4%) was 43% lower (95% CI 13% – 63%) than in the alendronate cohort (0.6%). These results were consistent across a number of sensitivity analyses. CONCLUSION: Patients receiving risedronate have lower rates of hip and nonvertebral fractures during their first year of therapy than patients receiving alendronate

    Fortified breakfast cereal consumed daily for 12 wk leads to a significant improvement in micronutrient intake and micronutrient status in adolescent girls: a randomised controlled trial

    Get PDF
    Background: Poor micronutrient status is reported among adolescents across Europe and USA. This may be related to the well-documented decline in the regular consumption of breakfast by this group. The regular consumption of a breakfast cereal offers a possible means to improve micronutrient status; fortified cereal is likely to have enhanced benefit. A study was conducted to determine the efficacy of the regular consumption of a fortified cereal with milk, compared with unfortified cereal, consumed either as a breakfast or a supper, in improving micronutrient intake and micronutrient status of adolescent girls. Methods: A randomised, double-blind, placebo-controlled intervention trial was conducted in girls recruited at ages 16–19 years, from schools and colleges in Sheffield, UK. Girls were randomised to receive 50 g fortified or unfortified cereal, with 150 ml semi-skimmed milk, daily, for 12 weeks, as a breakfast or as a supper. Dietary intake was estimated using a 4-d food diary and blood collected for the assessment of nutritional status. Within-group changes were tested using a paired sample t test; two-way ANOVA was used to analyse effects of the intervention, with cereal type and time of consumption as factors, correcting for baseline values. The analysis was conducted on 71 girls who completed the study. Results: Consumption of unfortified cereal elicited an increase in the intake of vitamins B1, B2 and B6; consumption of fortified cereal elicited increases in vitamins B1, B2, B6, B12, folate and iron (P < 0.001) and of vitamin D (P = 0.007), all increases were significantly greater than for unfortified cereal. Consumption of the fortified cereal also led to a significant improvement in biomarkers of status for vitamins B2, B12, folate and of iron, compared with girls receiving the unfortified cereal, and maintained vitamin D status, in contrast with the girls receiving the unfortified cereal (P < 0.001). Conclusions: The daily consumption of cereal with milk for 12 weeks by adolescent girls, increased intakes of micronutrients. The consumption of fortified cereal elicited greater increases than for unfortified cereal and improved biomarkers of micronutrient status. The findings justify strategies to encourage the consumption of fortified cereal with milk by adolescents, either as a breakfast or a supper

    Age-related increases in parathyroid hormone may be antecedent to both osteoporosis and dementia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous studies have reported that age-induced increased parathyroid hormone plasma levels are associated with cognitive decline and dementia. Little is known about the correlation that may exist between neurological processing speed, cognition and bone density in cases of hyperparathyroidism. Thus, we decided to determine if parathyroid hormone levels correlate to processing speed and/or bone density.</p> <p>Methods</p> <p>The recruited subjects that met the inclusion criteria (n = 92, age-matched, age 18-90 years, mean = 58.85, SD = 15.47) were evaluated for plasma parathyroid hormone levels and these levels were statistically correlated with event-related P300 potentials. Groups were compared for age, bone density and P300 latency. One-tailed tests were used to ascertain the statistical significance of the correlations. The study groups were categorized and analyzed for differences of parathyroid hormone levels: parathyroid hormone levels <30 (n = 30, mean = 22.7 ± 5.6 SD) and PTH levels >30 (n = 62, mean = 62.4 ± 28.3 SD, p ≤ 02).</p> <p>Results</p> <p>Patients with parathyroid hormone levels <30 showed statistically significantly less P300 latency (P300 = 332.7 ± 4.8 SE) relative to those with parathyroid hormone levels >30, which demonstrated greater P300 latency (P300 = 345.7 ± 3.6 SE, p = .02). Participants with parathyroid hormone values <30 (n = 26) were found to have statistically significantly higher bone density (M = -1.25 ± .31 SE) than those with parathyroid hormone values >30 (n = 48, M = -1.85 ± .19 SE, p = .04).</p> <p>Conclusion</p> <p>Our findings of a statistically lower bone density and prolonged P300 in patients with high parathyroid hormone levels may suggest that increased parathyroid hormone levels coupled with prolonged P300 latency may become putative biological markers of both dementia and osteoporosis and warrant intensive investigation.</p

    An increase in dietary n-3 fatty acids decreases a marker of bone resorption in humans

    Get PDF
    Human, animal, and in vitro research indicates a beneficial effect of appropriate amounts of omega-3 (n-3) polyunsaturated fatty acids (PUFA) on bone health. This is the first controlled feeding study in humans to evaluate the effect of dietary plant-derived n-3 PUFA on bone turnover, assessed by serum concentrations of N-telopeptides (NTx) and bone-specific alkaline phosphatase (BSAP). Subjects (n = 23) consumed each diet for 6 weeks in a randomized, 3-period crossover design: 1) Average American Diet (AAD; [34% total fat, 13% saturated fatty acids (SFA), 13% monounsaturated fatty acids (MUFA), 9% PUFA (7.7% LA, 0.8% ALA)]), 2) Linoleic Acid Diet (LA; [37% total fat, 9% SFA, 12% MUFA, 16% PUFA (12.6% LA, 3.6% ALA)]), and 3) α-Linolenic Acid Diet (ALA; [38% total fat, 8% SFA, 12% MUFA, 17% PUFA (10.5% LA, 6.5% ALA)]). Walnuts and flaxseed oil were the predominant sources of ALA. NTx levels were significantly lower following the ALA diet (13.20 ± 1.21 nM BCE), relative to the AAD (15.59 ± 1.21 nM BCE) (p < 0.05). Mean NTx level following the LA diet was 13.80 ± 1.21 nM BCE. There was no change in levels of BSAP across the three diets. Concentrations of NTx were positively correlated with the pro-inflammatory cytokine TNFα for all three diets. The results indicate that plant sources of dietary n-3 PUFA may have a protective effect on bone metabolism via a decrease in bone resorption in the presence of consistent levels of bone formation

    The Founder’s Lecture 2009: advances in imaging of osteoporosis and osteoarthritis

    Get PDF
    The objective of this review article is to provide an update on new developments in imaging of osteoporosis and osteoarthritis over the past three decades. A literature review is presented that summarizes the highlights in the development of bone mineral density measurements, bone structure imaging, and vertebral fracture assessment in osteoporosis as well as MR-based semiquantitative assessment of osteoarthritis and quantitative cartilage matrix imaging. This review focuses on techniques that have impacted patient management and therapeutic decision making or that potentially will affect patient care in the near future. Results of pertinent studies are presented and used for illustration. In summary, novel developments have significantly impacted imaging of osteoporosis and osteoarthritis over the past three decades

    Algorithm for the use of biochemical markers of bone turnover in the diagnosis, assessment and follow-up of treatment for osteoporosis

    Get PDF
    Introduction Increased biochemical bone turnover markers (BTMs) measured in serum are associated with bone loss, increased fracture risk and poor treatment adherence, but their role in clinical practice is presently unclear. The aim of this consensus group report is to provide guidance to clinicians on how to use BTMs in patient evaluation in postmenopausal osteoporosis, in fracture risk prediction and in the monitoring of treatment efficacy and adherence to osteoporosis medication. Methods A working group with clinical scientists and osteoporosis specialists was invited by the Scientific Advisory Board of European Society on Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Results Serum bone formation marker PINP and resorption marker βCTX-I are the preferred markers for evaluating bone turnover in the clinical setting due to their specificity to bone, performance in clinical studies, wide use and relatively low analytical variability. BTMs cannot be used to diagnose osteoporosis because of low sensitivity and specificity, but can be of value in patient evaluation where high values may indicate the need to investigate some causes of secondary osteoporosis. Assessing serum levels of βCTX-I and PINP can improve fracture prediction slightly, with a gradient of risk of about 1.2 per SD increase in the bone marker in addition to clinical risk factors and bone mineral density. For an individual patient, BTMs are not useful in projecting bone loss or treatment efficacy, but it is recommended that serum PINP and βCTX-I be used to monitor adherence to oral bisphosphonate treatment. Suppression of the BTMs greater than the least significant change or to levels in the lower half of the reference interval in young and healthy premenopausal women is closely related to treatment adherence. Conclusion In conclusion, the currently available evidence indicates that the principal clinical utility of BTMs is for monitoring oral bisphosphonate therapy

    Osteoporosis: the current status of mesenchymal stem cell-based therapy

    Full text link
    corecore