364 research outputs found

    Ecdysone Triggers the Expression of Golgi Genes in Drosophila Imaginal Discs via Broad-Complex

    Get PDF
    AbstractOne of the most significant morphogenic events in the development of Drosophila melanogaster is the elongation of imaginal discs during puparium formation. We have shown that this macroscopic event is accompanied by the formation of Golgi stacks from small Golgi larval clusters of vesicles and tubules that are present prior to the onset of disc elongation. We have shown that the fly steroid hormone 20-hydroxyecdysone triggers both the elongation itself and the formation of Golgi stacks (V. Kondylis, S. E. Goulding, J. C. Dunne, and C. Rabouille, 2001, Mol. Biol. Cell, 12, 2308). Using mRNA in situ hybridisation, we show here that ecdysone triggers the upregulation of a subset of genes encoding Golgi-related proteins (such as dnsf1, dsec23, dsed5, and drab1) and downregulates the expression of others (such as dergic53, dβ'COP, anddrab6). We show that the transcription factor Broad-complex, itself an “early” ecdysone target, mediates this regulation. And we show that the ecdysone-independent upregulation of dnsf1 and dsnap prior to the ecdysone peak leads to a precocious formation of large Golgi stacks. The ecdysone-triggered biogenesis of Golgi stacks at the onset of imaginal disc elongation offers the exciting possibility of advancing our understanding of the relationship between gene expression and organelle biogenesis

    Loss of a Clueless-dGRASP complex results in ER stress and blocks Integrin exit from the perinuclear endoplasmic reticulum in Drosophila larval muscle

    Get PDF
    Citation: Wang, Z. H., Rabouille, C., & Geisbrecht, E. R. (2015). Loss of a Clueless-dGRASP complex results in ER stress and blocks Integrin exit from the perinuclear endoplasmic reticulum in Drosophila larval muscle. Biology Open, 4(5), 636-648. doi:10.1242/bio.201511551Drosophila Clueless (Clu) and its conserved orthologs are known for their role in the prevention of mitochondrial clustering. Here, we uncover a new role for Clu in the delivery of integrin subunits in muscle tissue. In clu mutants, alpha PS2 integrin, but not beta PS integrin, abnormally accumulates in a perinuclear endoplasmic reticulum (ER) subdomain, a site that mirrors the endogenous localization of Clu. Loss of components essential for mitochondrial distribution do not phenocopy the clu mutant alpha PS2 phenotype. Conversely, RNAi knockdown of the Drosophila Golgi reassembly and stacking protein GRASP55/65 (dGRASP) recapitulates clu defects, including the abnormal accumulation of alpha PS2 and larval locomotor activity. Both Clu and dGRASP proteins physically interact and loss of Clu displaces dGRASP from ER exit sites, suggesting that Clu cooperates with dGRASP for the exit of alpha PS2 from a perinuclear subdomain in the ER. We also found that Clu and dGRASP loss of function leads to ER stress and that the stability of the ER exit site protein Sec16 is severely compromised in the clu mutants, thus explaining the ER accumulation of alpha PS2. Remarkably, exposure of clu RNAi larvae to chemical chaperones restores both alpha PS2 delivery and functional ER exit sites. We propose that Clu together with dGRASP prevents ER stress and therefore maintains Sec16 stability essential for the functional organization of perinuclear early secretory pathway. This, in turn, is essential for integrin subunit alpha PS2 ER exit in Drosophila larval myofibers

    Temporal variability of live (stained) benthic foraminiferal faunas in a river-dominated shelf – Faunal response to rapid changes of the river influence (Rhône prodelta, NW Mediterranean)

    Get PDF
    In the context of the French research project CHACCRA (Climate and Human-induced Alterations in Carbon Cycling at the River-seA connection), living (rose Bengal-stained) benthic foraminifera were investigated at two stations (24 and 67 m depth) in the Rhône prodelta (NW Mediterranean, Gulf of Lions). The aim of this study was to precise the response of benthic foraminiferal faunas to temporal changes of the Rhône River inputs (e.g. organic and terrigeneous material). Each site was sampled in April 2007, September 2007, May 2008 and December 2008, permitting to observe foraminiferal faunas of the 63–150 and >150 μm size fractions under a wide range of environmental conditions. Obvious variations in foraminiferal faunal composition were observed during the four investigated periods at the shallowest Station A located in the close vicinity of the Rhône River mouth. After major Rhône River flood events, different colonisation stages were observed with foraminiferal faunas responding with an opportunistic strategy few days to weeks after the creation of a peculiar sedimentary environment (<i>Leptohalysis scottii</i>, May 2008) or high organic matter supplies (<i>Ammonia tepida</i>, December 2008). Under more stable conditions, relatively diverse and equilibrated faunas grew in the sediments. Species benefited from noticeable input of riverine phytodetritus to the sediment during spring bloom conditions (April 2007; e.g. <i>Bolivina dilatata</i>, <i>Nonionella stella</i>, <i>Stainforthia fusiformis</i>), or high amounts of still bio-available organic matter under more oligotrophic conditions (September 2007; e.g. <i>Ammonia tepida</i>, <i>Psammosphaera fusca</i>). The reduced influence of the Rhône River input at the farther Station N led to less contrasted environmental conditions during the four sampling periods, and so to less obvious variations in foraminiferal faunal composition. During reduced riverine influence (i.e. low Rhône discharge), species able to feed on fresh phytodetritus (e.g. <i>Clavulina cylindrica</i>, <i>Hopkinsina atlantica</i>, <i>Nonionella iridea</i> and <i>Nonionella turgida</i>) benefited from eutrophic conditions of the spring bloom (April 2007, May 2008). Conversely, the occurrence of <i>Nouria polymorphinoides</i> under oligotrophic conditions (September 2007, December 2008) was indicative of a benthic environment potentially disturbed by bottom currents. This study put into evidence the extremely rapid response of benthic foraminiferal faunas to strong variations in environmental conditions mostly induced by the Rhône dynamics

    Spatial distribution of benthic foraminifera in the Rhône prodelta: faunal response to organic matter focussing

    Get PDF
    On many continental shelf areas, the combination of high surface water productivity coupled with limited water depth leads to important organic matter deposits on the sea floor. In the Gulf of Lion, the Rhone River is a major source of nutrients and organic matter. This important supply may create important eutrophication and hypoxia on the benthic environment. In our study, three faunal assemblages occur in relation to the organic enrichment gradient and to the oxygen penetration in the sediment. The first assemblage is situated in the immediate vicinity of the river mouth (1.3 % &lt; Corg &lt; 1.9 %; 1 mm &lt; O2 penetration&lt; 2 mm); the faunas are characterized by a low density and biodiversity; they are dominated by Fursenkoina fusiformis, Bulimina aculeata, Reophax scotti, and A. longirostra. A second assemblage is situated in the intermediate part of the organic enrichment zone (1.0 % &lt; Corg &lt; 1.3 %; 2 mm &lt; O2 penetration&lt; 4 mm) and is characterized by maximum densities and intermediate biodiversity; faunas are dominated by the species Nonionella turgida, Hopkinsina pacifica and Nonion scaphum accompanied in lower proportions by the species Rectuvigerina phlegeri. A third assemblage is situated in the outer part of the organic-rich sediments (0.7 % &lt; Corg &lt; 1.0 %; 4 &lt; O2 penetration&lt; 7 mm). The faunas are characterized by high densities and a high biodiversity; they are dominated by Cassidulina carinata accompanied in lower proportions by the species Epistominella vitrea, Valvulineria bradyana and Textularia porrecta

    Quantifying Cyanothece growth under DIC limitation.

    Full text link
    The photoautotrophic, unicellular N2-fixer, Cyanothece, is a model organism that has been widely used to study photosynthesis regulation, the structure of photosystems, and the temporal segregation of carbon (C) and nitrogen (N) fixation in light and dark phases of the diel cycle. Here, we present a simple quantitative model and experimental data that together, suggest external dissolved inorganic carbon (DIC) concentration as a major limiting factor for Cyanothece growth, due to its high C-storage requirement. Using experimental data from a parallel laboratory study as a basis, we show that after the onset of the light period, DIC was rapidly consumed by photosynthesis, leading to a sharp drop in the rate of photosynthesis and C accumulation. In N2-fixing cultures, high rates of photosynthesis in the morning enabled rapid conversion of DIC to intracellular C storage, hastening DIC consumption to levels that limited further uptake. The N2-fixing condition allows only a small fraction of fixed C for cellular growth since a large fraction was reserved in storage to fuel night-time N2 fixation. Our model provides a framework for resolving DIC limitation in aquatic ecosystem simulations, where DIC as a growth-limiting factor has rarely been considered, and importantly emphasizes the effect of intracellular C allocation on growth rate that varies depending on the growth environment

    Vps13 is required for timely removal of nurse cell corpses

    Get PDF
    Programmed cell death and consecutive removal of cellular remnants is essential for development. During late stages of Drosophila melanogaster oogenesis, the small somatic follicle cells that surround the large nurse cells, promote non-apoptotic nurse cell death, subsequently engulf them, and contribute to the timely removal of nurse cell corpses. Here we identify a role for Vps13 in the timely removal of nurse cell corpses downstream of developmental programmed cell death. Vps13 is an evolutionary conserved peripheral membrane protein associated with membrane contact sites and lipid transfer. Vps13 is expressed in late nurse cells and persistent nurse cell remnants are observed when Vps13 is depleted from nurse cells but not from follicle cells. Microscopic analysis revealed enrichment of Vps13 in close proximity to the plasma membrane and the endoplasmic reticulum in nurse cells undergoing degradation. Ultrastructural analysis uncovered the presence of an underlying Vps13-dependent membranous structure in close association with the plasma membrane. The newly identified structure and function suggests the presence of a Vps13-dependent process required for complete degradation of bulky remnants of dying cells

    Comparison of hypoxia among four river-dominated ocean margins: The Changjiang (Yangtze), Mississippi, Pearl, and Rhône rivers

    Get PDF
    We examined the occurrence of seasonal hypoxia (O2&lt;2 mg l-1) in the bottom waters of four river-dominated ocean margins (off the Changjiang, Mississippi, Pearl and Rhône Rivers) and compared the processes leading to the depletion of oxygen. Consumption of oxygen in bottom waters is linked to biological oxygen demand fueled by organic matter from primary production in the nutrient-rich river plume and perhaps terrigenous inputs. Hypoxia occurs when this consumption exceeds replenishment by diffusion, turbulent mixing or lateral advection of oxygenated water. The margins off the Mississippi and Changjiang are affected the most by summer hypoxia, while the margins off the Rhône and the Pearl rivers systems are less affected, although nutrient concentrations in the river water are very similar in the four systems. Spring and summer primary production is high overall for the shelves adjacent to the Mississippi, Changjiang and Pearl (1-10 g C m-2 d-1), and lower off the Rhône River (<1 g C m-2 d-1), which could be one of the reasons of the absence of hypoxia on the Rhône shelf. The residence time of the bottom water is also related to the occurrence of hypoxia, with the Mississippi margin showing a long residence time and frequent occurrences of hypoxia during summer over very large spatial scales, whereas the East China Sea (ECS)/Changjiang displays hypoxia less regularly due to a shorter residence time of the bottom water. Physical stratification plays an important role with both the Changjiang and Mississippi shelf showing strong thermohaline stratification during summer over extended periods of time, whereas summer stratification is less prominent for the Pearl and Rhône partly due to the wind effect on mixing. The shape of the shelf is the last important factor since hypoxia occurs at intermediate depths (between 5 and 50 m) on broad shelves (Gulf of Mexico and ECS). Shallow estuaries with low residence time such as the Pearl River estuary during the summer wet season when mixing and flushing are dominant features, or deeper shelves, such as the Gulf of Lion off the Rhône show little or no hypoxia

    Electron & Biomass Dynamics of Cyanothece Under Interacting Nitrogen & Carbon Limitations

    Get PDF
    Marine diazotrophs are a diverse group with key roles in biogeochemical fluxes linked to primary productivity. The unicellular, diazotrophic cyanobacterium Cyanothece is widely found in coastal, subtropical oceans. We analyze the consequences of diazotrophy on growth efficiency, compared to NO3–-supported growth in Cyanothece, to understand how cells cope with N2-fixation when they also have to face carbon limitation, which may transiently affect populations in coastal environments or during blooms of phytoplankton communities. When grown in obligate diazotrophy, cells face the double burden of a more ATP-demanding N-acquisition mode and additional metabolic losses imposed by the transient storage of reducing potential as carbohydrate, compared to a hypothetical N2 assimilation directly driven by photosynthetic electron transport. Further, this energetic burden imposed by N2-fixation could not be alleviated, despite the high irradiance level within the cultures, because photosynthesis was limited by the availability of dissolved inorganic carbon (DIC), and possibly by a constrained capacity for carbon storage. DIC limitation exacerbates the costs on growth imposed by nitrogen fixation. Therefore, the competitive efficiency of diazotrophs could be hindered in areas with insufficient renewal of dissolved gases and/or with intense phytoplankton biomass that both decrease available light energy and draw the DIC level down
    corecore