3,463 research outputs found

    Automatic sample rotator for metallographic polishing

    Get PDF
    Simple, inexpensive device can be attached to most metallographic sample polishing tables. It provides a suitable surface finish for microscopic examination or photography of surface details of the samples

    Thermodynamic constraints on fluctuation phenomena

    Get PDF
    The relationships between reversible Carnot cycles, the absence of perpetual motion machines and the existence of a non-decreasing, globally unique entropy function forms the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending, rather than restricting, the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.Comment: 12 pages, 24 figure

    Precise overgrowth composition during biomineral culture and inorganic precipitation

    Get PDF
    We introduce a method to analyze element ratios and isotope ratios in mineral overgrowths. This general technique can quantify environmental controls on proxy behavior for a range of cultured biominerals and can also measure compositional effects during seeded mineral growth. Using a media enriched in multiple stable isotopes, the method requires neither the mass nor the composition of the initial seed or skeleton to be known and involves only bulk isotope measurements. By harnessing the stability and sensitivity of bulk analysis the new approach promises high precision measurements for a range of elements and isotopes. This list includes trace species and select non-traditional stable isotopes, systems where sensitivity and external reproducibility currently limit alternative approaches like secondary ion mass spectrometry (SIMS) and laser ablation mass spectrometry. Since the method separates isotopically labeled growth from unlabeled material, well-choreographed spikes can resolve the compositional effects of different events through time. Among other applications, this feature could be used to separate the impact of day and night on biomineral composition in organisms with photosymbionts

    Dynamical description of vesicle growth and shape change

    Full text link
    We systematize and extend the description of vesicle growth and shape change using linear nonequilibrium thermodynamics. By restricting the study to shape changes from spheres to axisymmetric ellipsoids, we are able to give a consistent formulation which includes the lateral tension of the vesicle membrane. This allows us to generalize and correct a previous calculation. Our present calculations suggest that, for small growing vesicles, a prolate ellipsoidal shape should be favored over oblate ellipsoids, whereas for large growing vesicles oblates should be favored over prolates. The validity of this prediction is examined in the light of the various assumptions made in its derivation.Comment: 6 page

    Heat transfer between nanoparticles: Thermal conductance for near-field interactions

    Get PDF
    We analyze the heat transfer between two nanoparticles separated by a distance lying in the near-field domain in which energy interchange is due to Coulomb interactions. The thermal conductance is computed by assuming that the particles have charge distributions characterized by fluctuating multipole moments in equilibrium with heat baths at two different temperatures. This quantity follows from the fluctuation-dissipation theorem (FDT) for the fluctuations of the multipolar moments. We compare the behavior of the conductance as a function of the distance between the particles with the result obtained by means of molecular dynamics simulations. The formalism proposed enables us to provide a comprehensive explanation of the marked growth of the conductance when decreasing the distance between the nanoparticles

    alpha^2 corrections to parapositronium decay: a detailed description

    Full text link
    We present details of our recent calculation of alpha^2 corrections to the parapositronium decay into two photons. These corrections are rather small and our final result for the parapositronium lifetime agrees well with the most recent measurement. Implications for orthopositronium decays are briefly discussed.Comment: 18 pages, late

    A Skyrme-type proposal for baryonic matter

    Get PDF
    The Skyrme model is a low-energy effective field theory for QCD, where the baryons emerge as soliton solutions. It is, however, not so easy within the standard Skyrme model to reproduce the almost exact linear growth of the nuclear masses with the baryon number (topological charge), due to the lack of Bogomolny solutions in this model, which has also hindered analytical progress. Here we identify a submodel within the Skyrme-type low energy effective action which does have a Bogomolny bound and exact Bogomolny solutions, and therefore, at least at the classical level, reproduces the nuclear masses by construction. Due to its high symmetry, this model qualitatively reproduces the main features of the liquid droplet model of nuclei. Finally, we discuss under which circumstances the proposed sextic term, which is of an essentially geometric and topological nature, can be expected to give a reasonable description of properties of nuclei.Comment: 11 pages, 2 figures, latex. v3: Extended and revised version, some clarifications added. Some references and 2 figures added. v4: matches published versio

    Soft Photon Spectrum in Orthopositronium and Vector Quarkonium Decays

    Get PDF
    QED gauge invariance, when combined with analyticity, leads to constraints on the low energy end of the emitted photon spectra. This is known as Low's theorem. It is shown that the Ore-Powell result, as well as further developments for the orthopositronium differential decay rate, are in contradiction with Low's theorem, i.e. that their predicted soft photon spectra are incorrect. A solution to this problem is presented. The implications for the orthopositronium lifetime puzzle, the charmonium rho-pi puzzle, the prompt photon spectrum in inclusive quarkonium decays and the extraction of alpha_S from quarkonium annihilation rates are briefly commented.Comment: LaTeX, 10 page

    Semi-classical equation of state and specific heats for neutron-star inner crust with proton shell corrections

    Full text link
    An approach to the equation of state for the inner crust of neutron stars based on Skyrme-type forces is presented. Working within the Wigner-Seitz picture, the energy is calculated by the TETF (temperature-dependent extended Thomas-Fermi) method, with proton shell corrections added self-consistently by the Strutinsky-integral method. Using a Skyrme force that has been fitted to both neutron matter and to essentially all the nuclear mass data, we find strong proton shell effects: proton numbers ZZ = 50, 40 and 20 are the only values possible in the inner crust, assuming that nuclear equilibrium is maintained in the cooling neutron star right down to the ambient temperature. Convergence problems with the TETF expansion for the entropy, and our way of handling them, are discussed. Full TETF expressions for the specific heat of inhomogeneous nuclear matter are presented. Our treatment of the electron gas, including its specific heat, is essentially exact, and is described in detail.Comment: 41 pages, 6 figure
    corecore