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The Skyrme model is a low-energy effective field theory for QCD, where the baryons emerge as soliton
solutions. It is, however, not so easy within the standard Skyrme model to reproduce the almost exact
linear growth of the nuclear masses with the baryon number (topological charge), due to the lack of
Bogomolny solutions in this model, which has also hindered analytical progress. Here we identify a
submodel within the Skyrme-type low-energy effective action which does have a Bogomolny bound and
exact Bogomolny solutions, and therefore, at least at the classical level, reproduces the nuclear masses
by construction. Due to its high symmetry, this model qualitatively reproduces the main features of
the liquid droplet model of nuclei. Finally, we discuss under which circumstances the proposed sextic
term, which is of an essentially geometric and topological nature, can be expected to give a reasonable
description of properties of nuclei.
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1. Introduction

The Skyrme model [1] is an effective low-energy action for
QCD [2], where the primary ingredients are meson fields, whereas
baryons appear as solitonic excitations, and the baryon number is
identified with the topological charge.

The original Skyrme Lagrangian has the following form

L = L2 + L4 + L0, (1)

where

L2 = − f 2
π

4
Tr

(
U †∂μU U †∂μU

)
(2)

is the sigma model term, and a quartic term, referred as Skyrme
term, has to be added to circumvent the standard Derrick argu-
ment for the non-existence of static solutions,

L4 = − 1

32e2
Tr

([
U †∂μU , U †∂νU

]2)
. (3)

Here U is a 2 × 2 matrix-valued field with values in the group
SU(2). The last term, which is optional from the point of view of
the Derrick argument, is a potential

L0 = −μ2 V
(
U , U †), (4)
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which explicitly breaks the chiral symmetry. Its particular form is
usually adjusted to a concrete physical situation. The model has
two constants, the pion decay constant fπ and the interaction pa-
rameter e. Additional constants may appear from the potential.

The modern point of view on the Skyrme model is to treat it
as an expansion in derivatives of the true non-perturbative low-
energy effective action of QCD, where higher terms in derivatives
have been neglected. However, as extended (solitonic) solutions
have regions where derivatives are not small, there is no reason
for omitting such terms. Therefore, one should take into account
also higher terms. In fact, many generalized Skyrme models have
been investigated [3–6],

L = L2 + L4 + L0 + · · · , (5)

where dots denote higher derivatives terms. A simple and natu-
ral extension of the Skyrme model is the addition of sextic terms,
among which one is rather special. Namely, we will consider the
expression

L6 = λ2

242

(
Tr

(
εμνρσ U †∂μU U †∂νU U †∂ρU

))2
. (6)

In standard phenomenology, the addition of this term to the effec-
tive action represents the inclusion of the interactions generated
by the vector mesons ω. In fact, this term effectively appears if
one considers a massive vector field coupled to the chiral field via
the baryon density [7]. Further, this term is at most quadratic in
time derivatives (like the quartic Skyrme term) and allows for a
standard time dynamics and hamiltonian formulation. In addition,
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it leads to a significant improvement in the Skyrme model phe-
nomenology when applied to nucleons. Indeed, as explained first
in [5], once the sextic term is present, it becomes the main respon-
sible for stabilization, and then the quartic contribution changes
sign as it corresponds to the scalar exchange it represents (solv-
ing an old puzzle). This compensation with the quadratic term
holds also for the moments of inertia, when the rotation of all the
mass is taken into account, as it should in the classical computa-
tion.

In this Letter we want to study the model restricted to the po-
tential and the sextic term, L06 = L6 + L0, because this submodel
has some unique properties. First of all, it has a huge amount of
symmetry [8] and, therefore, it is integrable in the sense of gener-
alized integrability [9] (its symmetries and integrability properties
shall be discussed in detail in a separate publication; its symme-
tries are also important for its rather close relation to the liquid
droplet model of nuclei, as we shall discuss at length in the last
section). As a consequence, the model has infinitely many exact
solutions in all topological sectors, such that both energies and
profiles can be determined exactly. Finally, the model has a Bo-
gomolny bound which is saturated by all the exact solutions we
construct below. The existence of static solutions which saturate a
Bogomolny bound is very welcome for the description of nuclei, for
the following reasons. Firstly, the resulting soliton energies obey
an exactly linear relation with the baryon charges. Physical nuclei
are well known to obey this linear law with a rather high preci-
sion. Secondly, binding energies of higher solitons are zero, again
as a consequence of their Bogomolny nature. This conforms rather
well with the binding energies of physical nuclei, which are usu-
ally quite small (below the 1% level). Thirdly, the forces between
sufficiently separated solitons are exactly zero. This result is a con-
sequence of another crucial feature of our solitons, namely their
compact nature. Again, this absence of interactions, although not
exactly true, is a rather reasonable approximation for physical nu-
clei, given the very short range character of interactions between
them.

So we find a rather striking coincidence between some quali-
tative features of nuclei, on the one hand, and properties of our
classical soliton solutions, on the other hand. One important ques-
tion is, of course, whether this coincidence can be maintained at
the quantum level. A detailed investigation of the quantization of
the model is beyond the scope of this Letter, but we shall com-
ment further on it in the discussion section. In any case, the model
seems to correspond to a rather non-trivial “lowest order” effec-
tive field theory approximation to nuclei which already reproduces
some of their features quite well. We also want to remark that part
of the pseudoscalar meson dynamics is possibly taken into account
already by the potential L0, which breaks the chiral symmetry, as
goldstone condensation.

All the unique properties of the model may be ultimately traced
back to the geometric properties of the proposed term L6, i.e., to
the fact that it is the square of the pullback of the volume form
on the target space three-sphere S3 (we remind that as a manifold
SU(2) � S3) or, equivalently, the square of the topological (baryon)
current. We remark that models which are similar in some aspects,
although with a different target space geometry, have been stud-
ied in [10,11]. Further, the model studied in this Letter, as well as
its “baby Skyrme” version in (2 + 1) dimensions have already been
introduced in [12]. There, the main aim was a study of more gen-
eral properties of Skyrme models in any dimension. Concretely, the
limiting behaviour of the full generalized Skyrme model for small
couplings of the quadratic and quartic terms L2 and L4 was studied
numerically. In addition, an exact solution for the simplest hedge-
hog ansatz was constructed, both in 2 and in 3 dimensions. For
the three-dimensional solution, a rather complicated potential was
chosen in order to have exponentially localized solutions, whereas
in this Letter we shall focus on the case of the simple standard
Skyrme potential, which naturally leads to compact solitons. Be-
sides, our main purpose is to make contact with the phenomenol-
ogy of nuclei. The (2 + 1)-dimensional baby Skyrme version of the
model has been further investigated in [13] and recently in [14],
with results which are qualitatively similar to the ones we shall
find in the sequel (e.g. compact solitons, infinitely many symme-
tries, Bogomolny bounds).

2. Exact solutions

The Lagrangian of the proposed restriction of the Skyrme model
is

L06 = λ2

242

(
Tr

(
εμνρσ U †∂μU U †∂νU U †∂ρU

))2 − μ2 V
(
U , U †). (7)

We start from the standard parametrization for U by a real scalar
field ξ and a three component unit vector �n (�τ are the Pauli ma-
trices),

U = eiξ �n· �τ .

The vector field may be related to a complex scalar u by the stere-
ographic projection

�n = 1

1 + |u|2
(
u + ū,−i(u − ū), |u|2 − 1

)
giving finally (τ± = (1/2)(τ1 ± iτ2))

U †∂μU = W †
(

−iξμτ3 + 2 sin ξ

1 + |u|2
(
eiξ uμτ+ − e−iξ ūμτ−

))
W

where the SU(2) matrix field W is

W = (1 + uū)−
1
2

(
1 iu
iū 1

)

and obviously cancels in the Lagrangian. Using this parametrization
we get (uμ ≡ ∂μu, etc.)

L06 = − λ2 sin4 ξ

(1 + |u|2)4

(
εμνρσ ξνuρ ūσ

)2 − μ2 V (ξ) (8)

where we also assumed that the potential only depends on tr U .
The Euler–Lagrange equations read (V ξ ≡ ∂ξ V )

λ2 sin2 ξ

(1 + |u|2)4
∂μ

(
sin2 ξ Hμ

) − μ2 V ξ = 0,

∂μ

(
Kμ

(1 + |u|2)2

)
= 0,

where

Hμ = ∂(εανρσ ξνuρ ūσ )2

∂ξμ
, Kμ = ∂(εανρσ ξνuρ ūσ )2

∂ ūμ
.

These objects obey the useful formulas

Hμuμ = Hμūμ = 0, Kμξμ = Kμuμ = 0,

Hμξμ = Kμūμ = 2
(
εανρσ ξνuρ ūσ

)2
.

We are interested in static topologically non-trivial solutions. Thus
u must cover the whole complex plane (�n covers at least once S2)
and ξ ∈ [0,π ]. The natural (hedgehog) ansatz is

ξ = ξ(r), u(θ,φ) = g(θ)einφ.
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Then, the field equation for u reads

1

sin θ
∂θ

(
g2 gθ

(1 + g2)2 sin θ

)
− gg2

θ

(1 + g2)2 sin2 θ
= 0,

and the solution with the right boundary condition is

g(θ) = tan
θ

2
.

Observe that this solution holds for all values of n. The equation
for the real scalar field is

n2λ2 sin2 ξ

2r2
∂r

(
sin2 ξξr

r2

)
− μ2 V ξ = 0.

This equation can be simplified by introducing the new variable

z =
√

2μr3

3|n|λ ,

sin2 ξ∂z
(
sin2 ξξz

) − V ξ = 0, (9)

and may be integrated to

1

2
sin4 ξξ2

z = V , (10)

where we chose vanishing integration constant to get finite energy
solutions. Now, we have to specify a concrete potential. The most
obvious choice is the standard Skyrme potential

V = 1

2
Tr(1 − U ) → V (ξ) = 1 − cos ξ. (11)

Thus,

sin2 ξξz = ±√
2(1 − cos ξ) ⇒

∫
sin2 ξ

sin ξ/2
= ±2(z − z0).

The general solution reads

cos3 ξ

2
= ±3

4
(z − z0).

Imposing the boundary conditions for topologically non-trivial so-
lutions we get

ξ =
⎧⎨
⎩2 arccos 3

√
3z
4 z ∈ [0, 4

3 ]
0 z � 4

3 .

(12)

The corresponding energy is

E =
∫

d3x

(
− λ2 sin4 ξ

(1 + |u|2)4
(∇rξ)2(∇θ u∇φ ū − ∇φu∇θ ū)2 + μ2 V

)
.

(13)

Inserting the solution for u and (10) we find

E = 4π

∫
r2 dr

(
λ2n2 sin4 ξ

4r4
ξ2

r + μ2 V

)

= 4π · 2μ2
∫

r2 dr V
(
ξ(r)

) = 4
√

2πμλ|n|
∫

dz V
(
ξ(z)

)

= 8
√

2πμλ|n|
4/3∫
0

(
1 −

(
3

4

)2/3

z2/3
)

dz

= 64
√

2π

15
μλ|n|. (14)

The solution is of the compacton type, i.e., it has a finite support
(compact solutions of a similar type in different versions of the
baby Skyrme models have been found in [13,15]). The function ξ is
continuous but its first derivative is not. The jump of the derivative
is, in fact, infinite at the compacton boundary z = 4/3, as the left
derivative at this point tends to minus infinity. Nevertheless, the
energy density and the topological charge density (baryon num-
ber density) are continuous functions at the compacton boundary,
and the field equation (9) is well defined there, so the solution is
a strong solution. The reason is that ξz always appears in the com-
bination sin2 ξξz , and this expression is finite (in fact, zero) at the
compacton boundary. We could make the discontinuity disappear
altogether by introducing a new variable ξ̃ instead of ξ which sat-
isfies ξ̃z = sin2 ξξz . We prefer to work with ξ just because this is
the standard variable in the Skyrme model.

In order to extract the energy density it is useful to rewrite the
energy with the help of the rescaled radial coordinate

r̃ =
(√

2μ

4λ

) 1
3

r =
(

3|n|z
4

) 1
3

(15)

like

E = 8
√

2μλ

(
4π

|n| 1
3∫

0

dr̃r̃2(1 − |n|− 2
3 r̃2))

such that the energy density per unit volume (with the unit of
length set by r̃) is

E = 8
√

2μλ
(
1 − |n|− 2

3 r̃2). (16)

In the same fashion we get for the topological charge (baryon
number), see e.g. Chapter 1.4 of [16]

B = − 1

π2

∫
d3x

sin2 ξ

(1 + |u|2)2
iεmnlξmunūl

= 2n

π

∫
dr sin2 ξ ξr = 4n

π

4
3∫

0

dz

(
1 −

(
3

4

) 2
3

z
2
3

) 1
2

= sign(n)
4

π2

(
4π

|n| 1
3∫

0

dr̃r̃2(1 − |n|− 2
3 r̃2) 1

2

)
= n (17)

and for the topological charge density per unit volume

B = sign(n)
4

π2

(
1 − |n|− 2

3 r̃2) 1
2 . (18)

Both densities are, of course, zero outside the compacton radius

r̃ = |n| 1
3 . We remark that the values of the densities at the center

r̃ = 0 are independent of the topological charge B = n, whereas

the radii grow like n
1
3 . For n = 1, we plot the two densities in

Fig. 1, where we normalize both densities (i.e., multiply them by a
constant) such that their value at the center is one.

We now want to compare the phenomenological parameters
of our model (masses and radii) to the corresponding values for
physical nuclei. One should keep in mind, of course, that the com-
parison is done at the purely classical level, and all quantum cor-
rections are absent. First, observe that the energy of the solitons is
proportional to the topological (baryon) charge

E = E0|B|,
where E0 = 64

√
2πμλ/15. Such a linear dependence is a basic

feature in nuclear physics. Let us fix the energy scale by setting
E0 = 931.75 MeV. This is equivalent to the assumption that the
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Fig. 1. Normalized energy density (left figure) and topological charge density (right figure) as a function of the rescaled radius r̃, for topological charge n = 1. For |n| > 1, the

height of the densities remains the same, whereas their radius grows like |n| 1
3 .
Table 1
Energies of the soliton solutions in our model (E06), compared with the experimen-
tal masses of physical nuclei. All numbers are in MeV.

B E06 Eexperiment

1 931.75 939
2 1863.5 1876
3 2795.25 2809
4 3727 3727
6 5590.5 5601
8 7454 7455

10 9317.5 9327

mass of the B = 4 solution is equal to the mass of He4, which
is usually assumed because the ground state of He4 has zero
spin and isospin. Therefore, corrections to the mass from spin–
isospin interactions are absent. In Table 1 we compare the energies
of the solitons in our model with the experimental values. We
find that the maximal deviation in our model is only about 0.7%.
For the numerical determination of soliton masses in current ver-
sions of the Skyrme model we refer to [17] (the standard massive
Skyrme model) and to [18] (the vector Skyrme model, where a
coupling of the Skyrme field to vector mesons is used instead of
the quartic Skyrme term for the stabilisation of the Skyrmions).
There, typically, the Skyrmions with low baryon number are heav-
ier by a few percent, whereas they reproduce the linear growth
of mass with baryon number for higher baryon number. In [19]
the Skyrmion masses have been determined with the help of the
rational map approximation [20] for Skyrmions, with similar re-
sults.

Secondly, the sizes of the solitons can be easily computed and
read

R B = R0
3
√|B|, R0 =

(
2
√

2λ

μ

) 1
3

,

which again reproduces the well-known experimental relation. The
numerical value is fixed by assuming R0 = 1.25 fm.

3. Bogomolny bound

Now, we show that our solitons are of the BPS type and sat-
urate a Bogomolny bound. Let us mention here that a Bogomolny
bound also exists for the original Skyrme model L2 + L4, but it is
easy to prove that non-trivial solutions of this model cannot satu-
rate the bound (see, e.g., [16]; this bound has been found already
by Skyrme himself [1]).
The energy functional reads

E =
∫

d3x

(
λ2 sin4 ξ

(1 + |u|2)4

(
εmnliξmunūl

)2 + μ2 V

)

=
∫

d3x

(
λ sin2 ξ

(1 + |u|2)2
εmnliξmunūl ± μ

√
V

)2

∓
∫

d3x
2μλ sin2 ξ

√
V

(1 + |u|2)2
εmnliξmunūl

� ∓
∫

d3x
2μλ sin2 ξ

√
V

(1 + |u|2)2
εmnliξmunūl

= ±(
2λμπ2)[ −i

π2

∫
d3x

sin2 ξ
√

V

(1 + |u|2)2
εmnlξmunūl

]
≡ 2λμπ2C1|B| (19)

where B is the baryon number (topological charge) and the sign
has to be chosen appropriately (upper sign for B > 0). If we re-
place

√
V by one, then the result (i.e., the last equality in (19))

follows immediately (and the constant C1 = 1). Indeed, for V = 1
the expression in brackets is just the topological charge (17). An
equivalent derivation, which shall be useful below, starts with the
observation that this expression is just the base space integral of
the pullback of the volume form on the target space S3, normal-
ized to one. Further, while the target space S3 is covered once, the
base space S3 is covered B times, which implies the result. The
same argument continues to hold with the factor

√
V present (re-

member that V = V (ξ)), up to a constant C1. Indeed, we just have
to introduce a new target space coordinate ξ̄ such that

sin2 ξ
√

V (ξ)dξ = C1 sin2 ξ̄ dξ̄ . (20)

The constant C1 and a second constant C2, which is provided by
the integration of Eq. (20), are needed to impose the two condi-
tions ξ̄ (ξ = 0) = 0 and ξ̄ (ξ = π) = π , which have to hold if ξ̄ is a
good coordinate on the target space S3. Obviously, C1 depends on
the potential V (ξ). Specifically, for the standard Skyrme potential
V = 1 − cos ξ , C1 is

C1 = 32
√

2

15π

as may be checked easily by an elementary integration. We remark
that an analogous Bogomolny bound in one lower dimension has
been derived in [21,14] for the baby Skyrme model.
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The Bogomolny inequality is saturated by configurations obey-
ing the first order Bogomolny equation

λ sin2 ξ

(1 + |u|2)2
εmnliξmunūl = ∓μ

√
V ,

which, in the case of our ansatz, reduces to the square root of
Eq. (10). The saturation of the energy-charge inequality by our
solutions proves their stability. It is not possible to find configu-
rations with lesser energy in a sector with a fixed value of the
baryon charge.

4. Discussion

In this Letter we proposed an integrable limit of the full Skyrme
model which consists of two terms: the square of the pullback of
the target space volume (topological density) and a non-derivative
part, i.e., a potential. Both terms are needed to circumvent the Der-
rick argument. Then we explicitly solved the static model for a spe-
cific choice of the potential (the standard Skyrme potential). The
resulting solitons satisfy, in fact, a Bogomolny equation. These ex-
act Bogomolny solutions provide a linear relation between soliton
energy (= nuclear mass) and topological charge (= baryon num-
ber B), reproducing the experimental nuclear masses with a high
precision. Besides, these solitons have the remarkable property of
being compact, which allows to define a strict value of the soli-
ton size (= nuclear radius). The resulting radii R , too, follow the
standard experimental relation R ∼ |B|1/3 with a high precision.

These findings lead to the question of the nature and quality
of the approximation which our model provides for the proper-
ties of physical nuclei. Obviously, the model as it stands cannot
reproduce all features of nuclei, even qualitatively, because some
essential ingredients are still missing. First of all, the binding en-
ergy of higher nuclei is zero due to the Bogomolny nature of the
solutions. Although not entirely correct for physical nuclei, this
is, however, not such a bad approximation, because the nuclear
binding energies are known to be rather small. Their smallness is,
in fact, one of the motivations for the search for theories which
saturate a Bogomolny bound. Secondly, there are no pionic excita-
tions, because the corresponding term in the Lagrangian is absent.
This is related to the complete absence of forces between sepa-
rated, non-overlapping solitons. The absence of forces is a direct
consequence of the compact nature of these solitons, because sev-
eral non-overlapping solitons still represent an exact solution of
the field equations. Physical nuclei are not strictly non-interacting,
but given the very short range character of forces between nuclei,
the absence of interactions in the model may, in fact, be welcome
from a phenomenological point of view, within a certain approxi-
mation. Further, for physical nuclei a finite radius may be defined
with good accuracy, so the compact nature of the solitons may be
a virtue also from this point of view.

For the energy density we find that it is of the core type (i.e.,
larger in the center and decreasing towards the boundary), see
Fig. 1. The baryon density profile is again of the core type, but
flatter near the center, and with a smaller and more pronounced
surface (= region where the density decreases significantly). For
physical nuclei the density profile is quite flat (almost constant)
and for some nuclei even with a shallow valley in the center,
so here the phenomenological coincidence is reasonable but not
perfect. Let us also mention that the independence of the pro-
file heights of the baryon number conforms well with the known
properties of nuclei.

Our results for the profiles, however, have to be taken with
some care. First of all, they depend on the form of the potential
term, in contrast to the linear mass-charge relation (which holds
for all potentials) or the compact nature of the solitons (which
holds for a wide class of potentials). The second argument is re-
lated to the huge amount of symmetry of the model. Indeed, for
the energy functional for static field configurations, the volume-
preserving diffeomorphisms on the three-dimensional base space
are a subset of these symmetries. In physical terms, all defor-
mations of solitons which correspond to these volume-preserving
diffeomorphisms may be performed without any cost in energy.
But these deformations are exactly the allowed deformations for an
ideal, incompressible droplet of liquid where surface contributions
to the energy are neglected. These symmetries are not symmetries
of a physical nucleus. A physical nucleus has a definite shape, and
deformations which change this shape cost energy. Nevertheless,
deformations which respect the local volume conservation (i.e., de-
formations of an ideal incompressible liquid) cost much less energy
than volume-changing deformations, as an immediate consequence
of the liquid droplet model of nuclear matter.

This last observation also further explains the nature of the ap-
proximation our model provides for physical nuclei. It reproduces
some of the classical features of the nuclear liquid droplet model
at least on a qualitative level, and the huge amount of symme-
tries of the model is crucial for this fact. Its soliton energies, e.g.,
correspond to the bulk (volume) contribution of the liquid droplet
model, with the additional feature that the energies are quantized
in terms of a topological charge.

In other words, the model provides, besides a conceptual under-
standing with exact solutions, a new starting point or “zero order”
approximation which is different from other approximations. It al-
ready covers some nuclear droplet properties of nuclear matter,
and is topological in nature. For a more quantitative and phe-
nomenological application to nuclei, obviously both the inclusion
of additional terms and the quantization of some degrees of free-
dom are necessary.

So let us briefly discuss the question of possible generalizations
of the model. A first, simple generalization consists in the choice
of different potentials. The resulting solitons continue to saturate a
Bogomolny bound, therefore the linear relation E ∼ |B| between
energy and baryon number continues to hold. The energy and
baryon charge densities for a spherically symmetric ansatz (hedge-
hog), and even the compact or non-compact nature of the solitons,
however, will depend on the specific form of the potential.

A further generalization consists in including additional terms
in the Lagrangian (like the terms L2 and L4 of the standard Skyrme
model) which we have neglected so far. From the effective field
theory point of view there is no reason not to include them. If we
omit, e.g., the kinetic term for the chiral fields, then there are no
obvious pseudo-scalar degrees of freedom (η, �π ). These additional
terms break the huge symmetry of the original model, such that
the solitons now have fixed shapes. In order to describe nuclei,
these shapes should be at least approximately spherically symmet-
ric. A detailed investigation of this issue is beyond the scope of
the present Letter, but let us mention that at least under simple
volume-preserving deformations from a spherical to an ellipsoidal
shape both the E2 term and the E4 term energetically prefer the
spherical shape. Further, the reasonable qualitative success of the
restricted model might indicate that the additional terms should
be small in some sense (e.g., their contribution to the total energy
should not be too big). This opens the possibility of an approx-
imate treatment, where the solitons of the restricted model L06
provide the solutions to “zeroth order” (with all the topology and
reasonable energies already present), whereas the additional terms
provide corrections, which may be adapted to the experimental
energies and shapes of nuclei.

Further, a more realistic treatment certainly requires the inves-
tigation of the issue of quantization. We emphasize again that the
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rather good phenomenological properties of the model up to now
are based exclusively on the classical solutions, and it is a differ-
ent question whether quantum corrections are sufficiently small
or well-behaved such that this success carries over to the quan-
tized model. A first step in this direction consists in applying the
rigid rotor quantization to the (iso-) rotational degrees of freedom,
as has been done already for the standard Skyrme theory [22], for
some recent applications to the spectroscopy of nuclei see e.g. [23].
Some first calculations related to this rigid rotor quantization have
been done already, with encouraging results. A second issue is,
of course, the collective coordinate quantization of the (infinitely
many) remaining symmetries. This point certainly requires further
study. A pragmatic approach could assume that a more realistic
application to nuclei requires, in any case, the inclusion of more in-
teractions (even if they are in some sense small), breaking thereby
the huge symmetry explicitly. Nevertheless, the quantization of the
volume-preserving diffeomorphisms may be of some independent
interest, although the solution of this problem might be difficult.
Finally, the semi-classical quantization of the remaining degrees of
freedom, which are not symmetries, probably just amounts to a
renormalization of the coupling constants in the effective field the-
ory. These are usually taken into account implicitly by fitting the
coupling constants to experimentally measured quantities.

In any case, we think that we have identified and solved an
important submodel in the space of Skyrme-type effective field
theories, which is singled out both by its capacity to reproduce
qualitative properties of the liquid droplet approximation of nu-
clei, at least at the classical level, and by its unique mathematical
structure. The model directly relates the nuclear mass to the topo-
logical charge, and it naturally provides both a finite size for the
nuclei and the liquid droplet behaviour, which probably is not easy
to get from an effective field theory. So our model solves a concep-
tual problem by explicitly deriving said properties from a (simple
and solvable) effective field theory. Last not least, our exact so-
lutions might provide a calibration for the demanding numerical
computations in physical applications of more generalized Skyrme
models.

Given this success, it is appropriate to discuss the circumstances
which make the model relevant. First of all, from a fundamental
QCD point of view, there is no reason to neglect the sextic term,
just like there is no reason to ignore the quadratic and quartic
terms L2 and L4. So the good properties of the L06 model seem
to indicate that in certain circumstances the sextic term could be
more important than the terms L2 and L4. The quadratic term is
kinetic in nature, whereas the quartic term provides, as a leading
behaviour, two-body interactions. On the other hand, the sextic
term is essentially topological in nature, being the square of the
topological current (baryon current). So in circumstances where
our model is successful this seems to indicate that a collective
(topological) contribution to the nucleus is more important than
kinetic or two-body interaction contributions. This behaviour is, in
fact, not so surprising for a system at strong coupling (or for a
strongly non-linear system). A detailed study of the generalizations
mentioned above, or of the more conceptual considerations of this
paragraph, is beyond the scope of this Letter and will be presented
in future publications.

Finally, let us briefly mention a recent paper [24], which ap-
peared after completion of this Letter. There, a generalized Skyrme
model saturating a Bogomolny bound is derived along completely
different lines. The model of that paper consists of a Skyrme field
coupled to an infinite tower of vector mesons, where these vector
mesons may be interpreted as the expansion coefficients in a basis
of eigenfunctions along a fourth spatial direction. Simple Yang–
Mills theory in four Euclidean dimensions is the master theory
which gives rise to the generalized Skyrme model via the expan-
sion into the eigenfunctions along the fourth direction, and the
Bogomolny equation for the latter is a simple consequence of the
self-duality equations for instantons in the former theory. If only
a finite number of vector mesons is kept, the topological bound
is no longer saturated, but already for just the first vector me-
son, the energies are quite close to their topological bounds. This
latter observation might be in some sense related to the results
for our model, because integrating out the vector meson produces
precisely the sextic Skyrme term in lowest order. One wonders
whether it is possible to integrate out all the vector mesons, which
should lead directly to a topological (Bogomolny) version of the
Skyrme model.
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