24 research outputs found

    Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury

    Get PDF
    Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis

    Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition

    Get PDF
    Ageing of the global population has become a public health concern with an important socio-economic dimension. Ageing is characterized by an increase in the concentration of inflammatory markers in the bloodstream, a phenomenon that has been termed "inflammageing". The inflammatory response is beneficial as an acute, transient reaction to harmful conditions, facilitating the defense, repair, turnover and adaptation of many tissues. However, chronic and low grade inflammation is likely to be detrimental for many tissues and for normal functions. We provide an overview of low grade inflammation (LGI) and determine the potential drivers and the effects of the "inflamed" phenotype observed in the elderly. We discuss the role of gut microbiota and immune system crosstalk and the gut-brain axis. Then, we focus on major health complications associated with LGI in the elderly, including mental health and wellbeing, metabolic abnormalities and infections. Finally, we discuss the possibility of manipulating LGI in the elderly by nutritional interventions. We provide an overview of the evidence that exists in the elderly for omega-3 fatty acid, probiotic, prebiotic, antioxidant and polyphenol interventions as a means to influence LGI. We conclude that slowing, controlling or reversing LGI is likely to be an important way to prevent, or reduce the severity of, age-related functional decline and the onset of conditions affecting health and well-being; that there is evidence to support specific dietary interventions as a strategy to control LGI; and that a continued research focus on this field is warranted

    Lytic cell death induced by melittin bypasses pyroptosis but induces NLRP3 inflammasome activation and IL-1β release

    No full text
    The nucleotide-binding domain and leucine-rich repeat-containing receptor with a pyrin domain 3 (NLRP3) inflammasome is a sensor for different types of infections and alterations of homeostatic parameters, including abnormally high levels of the extracellular nucleotide ATP or crystallization of different metabolites. All NLRP3 activators trigger a similar intracellular pathway, where a decrease in intracellular K+ concentration and permeabilization of plasma membrane are key steps. Cationic amphipathic antimicrobial peptides and peptide toxins permeabilize the plasma membrane. In fact, some of them have been described to activate the NLRP3 inflammasome. Among them, the bee venom antimicrobial toxin peptide melittin is known to elicit an inflammatory reaction via the NLRP3 inflammasome in response to bee venom. Our study found that melittin induces canonical NLRP3 inflammasome activation by plasma membrane permeabilization and a reduction in the intracellular K+ concentration. Following melittin treatment, the apoptosis-associated speck-like protein, an adaptor protein with a caspase recruitment domain (ASC), was necessary to activate caspase-1 and induce IL-1β release. However, cell death induced by melittin prevented the formation of large ASC aggregates, amplification of caspase-1 activation, IL-18 release and execution of pyroptosis. Therefore, melittin-induced activation of the NLRP3 inflammasome results in an attenuated inflammasome response that does not result in caspase-1 dependent cell death.This work was supported by SAF2015-65740-R and Subdirección General de Redes y Centros de Investigación Cooperativa-FEDER, RICET RD12/0018/0007 and RD16/0027/0010. This work was also supported by grants from the European Research Council (ERC-2013-CoG 614578 to PP) and the Instituto Salud Carlos III-Fondo Europeo de Desarrollo Regional (PI13/00174 to PP). FM-S was supported by the Sara Borrell postdoctoral grant from the Instituto Salud Carlos III (CD12/00523

    Roles of extracellular nucleotides and P2 receptors in ectodomain shedding

    Get PDF
    Ectodomain shedding of integral membrane receptors results in the release of soluble molecules and modification of the transmembrane portions to mediate or modulate extracellular and intracellular signalling. Ectodomain shedding is stimulated by a variety of mechanisms, including the activation of P2 receptors by extracellular nucleotides. This review describes in detail the roles of extracellular nucleotides and P2 receptors in the shedding of various cell surface molecules, including amyloid precursor protein, CD23, CD62L, and members of the epidermal growth factor, immunoglobulin and tumour necrosis factor families. This review discusses the mechanisms involved in P2 receptor-mediated shedding, demonstrating central roles for the P2 receptors, P2X7 and P2Y2, and the sheddases, ADAM10 and ADAM17, in this process in a number of cell types
    corecore