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Abstract 

Ectodomain shedding of integral membrane receptors results in the release of soluble molecules and 

modification of the transmembrane portions to mediate or modulate extracellular and intracellular 

signalling. Ectodomain shedding is stimulated by a variety of mechanisms including activation of 

P2 receptors by extracellular nucleotides. This review describes in detail the roles of extracellular 

nucleotides and P2 receptors in the shedding of various cell surface molecules, including amyloid 

precursor protein, CD23, CD62L, and members of the epidermal growth factor, immunoglobulin 

and tumour necrosis factor families. This review discusses the mechanisms involved in P2 receptor-

mediated shedding, demonstrating central roles for the P2 receptors, P2X7 and P2Y2, and the 

sheddases, ADAM10 and ADAM17, in this process in a number of cell types. 

 

Keywords: purinergic signalling, P2X receptors, P2Y receptors, extracellular ATP, extracellular 

UTP, metalloprotease. 
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Introduction 

 

Ectodomain shedding is a post-translational modification of many cell surface molecules that 

results in their release as soluble molecules, which can subsequently induce cellular responses in an 

autocrine or paracrine manner, and in the modulation of the intracellular signalling properties of the 

remaining transmembrane portions [1]. Ectodomain shedding is exhibited by a diverse range of 

molecules including cell adhesion molecules, and cytokine and epidermal growth factors, and can 

be stimulated by a variety of mechanisms [1] including the activation of P2 receptors by 

extracellular nucleotides (Figure 1). 

P2 receptors are classified as either P2X or P2Y receptors [2]. P2X receptors are trimeric 

ligand-gated cation channels that are activated by adenosine 5’-triphosphate (ATP) to mediate the 

rapid flux of Na+, K+ and Ca2+, and in some instances organic ions [3]. In humans and rodents, 

seven P2X receptor subunits exist (P2X1-P2X7), which combine to form homomeric or heteromeric 

receptors [4]. P2Y receptors are G protein-coupled receptors and modulate various signalling events 

including adenylyl cyclase, phospholipase C and ion channel activation [5]. Eight P2Y receptors 

have been identified in humans and rodents (P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11-P2Y14) [5]. 

P2Y receptors are predominately activated by ATP or adenosine 5’-diphosphate (ADP), but some 

are preferentially activated by other nucleotides, such as P2Y2 by uridine 5’-triphosphate (UTP) 

[5].	 In addition, synthetic analogues of ATP and other nucleotides, including 2’,3’-O-(4-

benzoylbenzoyl) ATP (BzATP) and adenosine 5’-(γ-thio)triphosphate (ATPγS), can activate a 

number of P2X and P2Y receptors [6]. P2X and P2Y activation stimulates various downstream 

signalling pathways that affect many cellular processes. Although these pathways remain to be fully 

elucidated, it is widely accepted that purinergic signalling is involved in physiological and 

pathophysiological responses including neurotransmission, coagulation, inflammation, tissue 

regeneration, and cell proliferation, differentiation and death [7]. 
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As discussed below, P2X7 and P2Y2 are the main P2 receptors implicated in nucleotide-

induced ectodomain shedding. P2X7 is present on immune, bone, neural, epithelial and other cell 

types [8]. P2X7 is activated by BzATP and ATP, and to a lesser extent ATPγS [9]. Nicotinamide 

adenine dinucleotide (NAD) can also activate murine P2X7 following ADP-ribosylation by the 

ADP-ribosyltransferase ARTC2.2 [10]. P2X7 can be inhibited by broad-spectrum antagonists, 

including pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), Reactive Blue 2 and 

suramin, and by more specific antagonists, including Brilliant Blue G (BBG), KN-62, oxidised ATP 

and A 438079 [9]. P2X7 activity varies between human individuals and mouse strains due to single 

nucleotide polymorphisms, resulting in loss or gain of function variants, which can be used to 

establish the role of this receptor in nucleotide-induced responses [11]. P2Y2 is present on neural, 

bone, epithelial, endothelial, immune and renal cell types [12]. P2Y2 is activated by UTP and ATP, 

and to a lesser extent ATPγS [13]. Furthermore, there are synthetic P2Y2 agonists including 

PSB1114, MRS2698 and INS37217 [13], and synthetic P2Y2/P2Y4 agonists such as Diquafosol 

(INS365), which is used clinically to treat dry eye [6]. P2Y2 can be inhibited by broad-spectrum 

antagonists including Reactive Blue 2 and suramin [13], and by specific antagonists, such as AR-C 

118925XX [6]. This review aims to describe in detail the roles of extracellular nucleotides and P2 

receptors in the shedding of various cell surface molecules and the mechanisms involved in this 

process. 

 

Amyloid precursor protein 

 

The amyloid precursor protein is a single transmembrane receptor with an extracellular N-terminus 

and intracellular C-terminus (type I integral membrane protein), which can be processed to 

amyloid-β peptide (Aβ) by either the amyloidogenic or anti-amyloidogenic pathways [14] (Figure 

2). Amyloid-β peptide (Aβ) accumulation is a major pathological hallmark of Alzheimer’s disease 



	 5 

[14]. In the amyloidogenic pathway, the ectodomain of amyloid precursor protein is cleaved by β-

secretase to yield soluble amyloid precursor protein β (sAPPβ) and the remaining transmembrane 

protein, β-carboxyl-terminal fragment (β-CTF), which is subsequently cleaved by γ-secretase to 

release Aβ [14]. In the anti-amyloidogenic pathway, the ectodomain of β-amyloid precursor protein 

is cleaved by the α-secretase activity to yield soluble amyloid precursor protein α (sAPPα) and the 

remaining transmembrane protein, α-carboxyl-terminal fragment (α-CTF), which is subsequently 

cleaved by γ-secretase to generate a truncated, non-amyloidogenic Aβ fragment, p3 [14]. Several 

metalloproteases including ADAM9, ADAM10, ADAM17 and ADAM19 can function as α-

secretases [14], while both P2Y2 and P2X7 activation are involved in the release of sAPPα from 

cells [15, 16]. 

P2Y2 was first implicated in the shedding of sAPPα using P2Y2-transfected human 1321N1 

astrocytoma cells. UTP-induced rapid shedding of sAPPα from 1321N1 cells in a concentration-

dependent manner [17]. This process was dependent on extracellular Ca2+ and partly on 

extracellular signal-regulated protein kinase (ERK) phosphorylation, but independent of protein 

kinase C (PKC), Src and epidermal growth factor receptor (EGFR) activation [17]. Moreover, the 

metalloprotease inhibitors, phenanthroline and TAPI-2, and the proprotein convertase inhibitor, 

decanoyl-RVKR-CMK ketone (see Table 1 for sheddase inhibitors used in purinergic signalling 

studies), impaired UTP-induced sAPPα shedding [17]. Furthermore, short interfering RNA 

(siRNA) silencing of ADAM10 and ADAM17 reduced UTP-induced sAPPα shedding, and 

simultaneous silencing of both ADAMs near-completely suppressed this shedding [17]. This 

indicated that both ADAM10 and ADAM17 are involved in P2Y2-induced sAPPα shedding. 

Similarly, UTP induced sAPPα shedding via ADAM10 and ADAM17 in rat primary cortical 

neurons treated with interleukin (IL)-1β (to up-regulate P2Y2) or following transfection with P2Y2 

[18]. This study also demonstrated a role for phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) 
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in this pathway. UTP, and to a lesser extent ATP and BzATP, can also induce slow (48 hours) 

sAPPα shedding from primary rat cortical astrocytes [19]. Use of P2 antagonists supported a role 

for both P2Y2 and P2Y4, but not P2Y6, in this process [19]. Both ATP- and UTP-induced sAPPα 

shedding from primary rat cortical astrocytes was dependent on ERK and p38 mitogen-activated 

protein kinase (MAPK) activity [19]. 

P2X7 activation can also induce the rapid shedding of sAPPα from neural cell types. Both 

ATP and BzATP induced sAPPα shedding from human APP-transfected murine Neuro2a 

neuroblastoma cells, processes impaired by the P2X7 antagonists, BBG and A 438079, as well as 

by siRNA silencing of P2X7 [20]. Similarly, BzATP also induced sAPPα shedding from human 

SK-N-BE neuroblastoma cells, a process impaired by the P2X7 antagonists, oxidised ATP and A 

438079 [20]. Furthermore, BzATP induced sAPPα shedding from primary astrocytes and neural 

progenitor cells from wild-type, but not Pfizer P2X7 knockout, mice [20]. The broad-spectrum 

metalloprotease inhibitors, TAPI-2 and GM 6001, inhibited BzATP-induced sAPPα shedding from 

Neuro2a cells, but siRNA silencing of ADAM 9, ADAM10 and ADAM17 alone or in combination 

did not inhibit P2X7-induced shedding of sAPPα from these cells, suggesting the involvement of an 

alternate α-secretase in P2X7-induced shedding [20]. Additional pharmacological and siRNA 

evidence from this study [20] and a subsequent study [21] indicated that P2X7-induced shedding of 

sAPPα from neural cells depends on Rho and MAPK kinase modulation of ERK1/2 and c-Jun N-

terminal kinase (JNK) upstream of the intracellular signalling complex, ezrin radixin and moesin, 

and downstream PI3K. 

In contrast to the above studies, BzATP decreased α-secretase activity (as assessed by 

expression of α-CTF) in murine Neuro2a neuroblastoma cells, while BBG or A 438079 increased 

basal α-secretase activity in these cells [22, 23], as well as in P2X7-transfected human embryonic 

kidney (HEK) 293 cells [22]. This increased activity in the presence of P2X7 inhibition was 

mediated through inhibition of glycogen synthase kinase-3 (GSK-3) [22]. In vivo blockade of P2X7 
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by BBG in a murine model of early onset familial Alzheimer’s disease decreased the number of 

hippocampal plaques, which correlated with decreased GSK-3 activity but increased α-secretase 

activity [22]. Differences between these and the above studies on P2X7 and amyloid precursor 

protein processing may possibly be explained by use of different BzATP concentrations, with lower 

concentrations (<100 µM) decreasing α-secretase activity through P2X7 activation and higher 

concentrations (>100 µM) increasing α-secretase activity through P2Y2 activation [22, 23]. 

 

ARTC2.2 

 

ARTC2.2 is a glycosylphosphatidylinositol-anchored enzyme expressed on the cell surface of 

murine T cells, which can catalyse the ADP-ribosylation of P2X7 resulting in its activation [10]. 

NAD induced the rapid shedding of ARTC2.2 from murine YAC-1 lymphoma cells, a process 

abrogated by either a blocking antibody or blocking nanobody [24]. Moreover, NAD induced 

ARTC2.2 shedding from splenic CD4+ and CD8+ T cells of wild-type, but not Pfizer P2X7 

knockout, mice [24]. The metalloprotease inhibitor, BB-2516 (marimastat), and the 

ADAM10/ADAM17 inhibitor, GW 280264X, but not the ADAM10 inhibitor, GI 254023X, 

blocked this process in YAC-1 cells and T cells [24], indicating ADAM17 is the major sheddase 

involved in P2X7-induced ARTC2.2 shedding. Notably, shed ARTC2.2 retains enzymatic activity, 

but with a substrate specificity favouring secreted proteins over membrane proteins [24]. To the 

best of our knowledge this remains the only example of nucleotide-induced shedding of an 

ectodomain from a cell surface enzyme. 

 

CD14 (lipopolysaccharide receptor) 
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CD14 is a glycosylphosphatidylinositol-anchored receptor (type V integral membrane protein) 

expressed on the surface of monocytes and macrophages, and to a lesser extent endothelial and 

epithelial cells [25]. CD14 functions as a receptor for the lipopolysaccharide (LPS)/LPS binding 

complex [25]. ATP induced the rapid shedding of CD14 from resting, M1 and M2 murine 

macrophages, a process impaired by A 438079, or in macrophages from Pfizer P2X7 knockout 

mice [26]. GM 6001 also impaired ATP-induced CD14 shedding from murine macrophages [26], 

but the specific metalloprotease mediating this effect is yet to be identified. P2X7-induced CD14 

shedding may also occur in humans, as ATP incubation caused a loss in CD14+, but not CD33+, 

monocytes, in whole blood [27], however evidence for P2X7 in ATP-induced CD14 shedding in 

this setting remains to be determined. 

 

CD21 (C3d receptor) 

 

CD21 (C3d receptor) and CD35 (C3d/C4b receptor) comprise the two main complement receptors 

[28]. In humans different genes code these receptors, whilst in mice they are alternative splice 

products of the same gene [28]. CD21 is a type I integral membrane glycoprotein predominantly 

expressed on follicular dendritic cells and B cells [28]. BzATP induced rapid CD21 shedding from 

human B cells, which could be inhibited by the P2X7 antagonists, KN-62 and oxidised ATP [29] 

confirming a role for P2X7 in this process. The mechanism by which this process occurs remains 

unknown. CD21 shedding is a redox-regulated process involving oxidation of a tyrosine kinase 

pathway and reduction of metalloproteases [30]. Thus, the possibility remains that ATP-induced 

reactive oxygen species (ROS) formation may be involved in P2X7-induced CD21 shedding. 

 

CD23 (low affinity IgE receptor) 
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CD23 is a single transmembrane receptor with an extracellular C-terminus and intracellular N-

terminus (type II integral membrane protein), and is predominately present on B cells, and some 

dendritic and epithelial cells [31] CD23 is principally involved in the regulation of immunoglobulin 

(Ig)E, but can also function as a cell adhesion molecule [32]. Following CD23 shedding, the soluble 

form exerts cytokine-like properties [33]. ATP and BzATP were first shown to induce the rapid 

shedding of CD23 from human chronic lymphocytic leukaemic (CLL) lymphocytes [34]. KN-62 

and oxidised ATP, impaired this nucleotide-induced CD23 shedding [34], confirming a role for 

P2X7 in this process. Since then, P2X7-induced CD23 shedding has been described for human 

monocyte-derived dendritic cells [35], human monocyte-derived Langerhans cells [36], human 

RPMI 8226 multiple myeloma B cells [37], human B cells [38] and murine B cells [38, 39]. 

Monocyte-derived dendritic and Langerhans cells, from subjects homozygous for the loss-of-

function polymorphism E496A, exhibited attenuated ATP-induced CD23 shedding [35, 36] further 

supporting a role for P2X7 in this process. Finally, BzATP induced CD23 shedding from CD23-

transfected Chinese hamster ovary (CHO) cells [40]. However a direct role for P2X7 in this process 

was not established in this study, especially given that these cells express both endogenous P2X7 

[41] and P2Y receptors [42]. 

P2X7-induced CD23 shedding is primarily mediated by ADAM10. Comparisons of phorbol 

ester- and P2X7-induced shedding of CD23 and CD62L from CLL cells revealed that this process 

was mediated by different metalloproteases [34]. First, either phorbol ester treatment or P2X7 

activation induced CD62L shedding, but only P2X7 activation induced CD23 shedding. Second, the 

hydroxamic acid-based protease inhibitor of Zn2+-dependent metalloprotease, Ro 31-9790, inhibited 

P2X7-induced CD23 shedding more potently than P2X7-induced CD62L shedding. A role for 

ADAM10 in ATP- or BzATP-induced CD23 shedding was first shown in human histiocytic 

lymphoma U937 cells using an inhibitory prodomain construct of ADAM10, A10-(23-213) [43], 

and subsequently in CD23-transfected CHO cells and murine B cells using GI 254023X [39, 40]. 
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However, a direct role for P2X7 in CD23 shedding was not established in any of these studies. 

Subsequently, the broad-spectrum metalloprotease inhibitors, BB-94 (batimastat) and GM 6001, 

were shown to impair P2X7-induced CD23 shedding from RPMI 8226 cells [37] supporting a role 

for a metalloprotease in this process. Finally, using GI 254023X, direct evidence for ADAM10 in 

mediating P2X7-induced CD23 shedding was established in RPMI 8226 cells [44], and in human 

and murine B cells [38]. 

P2X7-induced CD23 shedding appears to occur independently of ion channel activity. 

Studies of P2X7-induced CD23 shedding in RPMI 8226 cells indicated that neither K+ efflux, Na+ 

influx, Ca2+ influx nor increases in intracellular Ca2+ were essential for this process [45]. In fact, 

extracellular Ca2+ partly impaired P2X7-induced CD23 shedding from CLL cells [34]. Similarly, 

Mn2+ and Mg2+ partly impaired P2X7-induced CD23 shedding from these cells [34]. However the 

mechanism by which these divalent cations impair P2X7-induced CD23 shedding remains 

unknown. Finally, attempts using small molecule inhibitors in RPMI 8226 cells have failed to 

establish a role of many enzymes, commonly downstream of P2X7 activation, in P2X7-induced 

CD23 shedding including PKC, JNK, Rho kinase, PI3K, GSK-3, MAPK, acid sphingomyelinase 

and phospholipases [45]. 

 

CD44 (phagocyte glycoprotein-1) 

 

CD44 (phagocyte glycoprotein-1) is a type I integral membrane glycoprotein expressed on 

leukocytes, fibroblasts, and epithelial and endothelial cells [46]. CD44 plays roles in cell adhesion, 

lymphocyte signalling, inflammation, angiogenesis and tumour metastasis [46]. ATP, but not ADP, 

induced the rapid shedding of CD44 from murine P388D1 lymphoid tumour cells, which was 

impaired by KN-62 and short hairpin RNA silencing of P2X7 [47], indicating a role for P2X7 in the 

process. In contrast, ATP was unable to alter the expression of cell surface CD44 on CLL cells [34]. 
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Thus, P2X7-induced CD44 shedding may be cell or species specific. Nevertheless, the mechanism 

involved in P2X7-induced CD44 shedding from P388D1 cells remains undefined. ADAM10 [48], 

ADAM17 [49], MMP (matrix metalloproteinase) 9 [50] and MMP14 [51] are involved in 

constitutive CD44 shedding, and thus one or more of these sheddases may play a role in P2X7-

induced CD44 shedding. Notably, the glycosaminoglycan chains of soluble CD44 have been 

reported to associate with P2X7 to function as a positive allosteric modulator of P2X7 activation 

[52]. Thus, it was proposed that P2X7 activation results in CD44 shedding, with the resulting 

soluble CD44 forming part of a regulatory positive feedback loop facilitating ATP-induced cell 

signalling via P2X7 [52, 53]. Whether other glycosaminoglycan chain-containing ectodomains shed 

following P2X7 activation can also modulate P2X7 remains unknown. 

 

CD62L (L-selectin) 

 

CD62L (L-selectin) is a type I integral membrane glycoprotein present predominately on leukocytes 

[54]. CD62L is involved in constitutive trafficking of lymphocytes through lymphoid organs, and 

rolling of leukocytes on inflamed vascular endothelium [54]. Seminal studies by Wiley and 

colleagues demonstrated that P2X7 activation could induce the rapid shedding of CD62L, revealing 

for the first time the potential importance of extracellular nucleotides and P2 receptors in 

ectodomain shedding. ATP was first shown to induce rapid CD62L shedding from the surface of 

CLL cells [55]. Adenosine, ADP and UTP did not cause CD62L shedding, while oxidised ATP 

inhibited both ATP- and BzATP-induced CD62L shedding from these cells [55]. Furthermore, KN-

62 inhibited ATP-induced CD62L shedding from CLL lymphocytes [34, 56], while BzATP-induced 

CD62L shedding was impaired in CLL cells expressing non-functional P2X7 [57]. Collectively, 

confirming a role for P2X7 in this process. 
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Following the studies above, it was shown that P2X7 activation can induce CD62L shedding 

from human B cells and T cells [29], and subsets of these cells from humans or mice including 

CD27- and CD27+ B cells [29], and CD4+ and CD8+ T cells [29, 58-60]. In murine T cells, NAD 

was also able to induce P2X7-induced CD62L shedding [61, 62]. ATP-induced CD62L shedding 

was impaired in lymphocytes, as well as monocytes, from subjects coding the P2X7 E496A loss-of-

function polymorphism [60, 63] and from Pfizer P2X7 knockout mice [64]. In contrast, BzATP-

induced CD62L shedding was found to be more rapid in T cells from GlaxoSmithKline P2X7 

knockout mice [65]; presumably due to the presence of the highly functional escape variant P2X7k 

in T cells from these mice [66, 67]. 

A physiological role for P2X7-induced CD62L shedding was implicated in T cell 

transendothelial migration to the heart in a murine model of Duchenne muscular dystrophy [68]. 

This study showed that treatment of mdx/mdx mice with the P2X7 antagonist, BBG, allowed the 

transendothelial migration of T cells to the heart by allowing sustained CD62L expression [68]. 

This suggested that impaired P2X7-induced CD62L shedding might contribute to the pathology of 

Duchenne muscular dystrophy. In contrast, oxidised ATP did not affect the loss of CD62L during 

CLL lymphocyte transmigration [69], suggesting P2X7 may not play a role in this process. This 

difference may be due to different experimental conditions including cell type and species. 

ADAM17 is thought to be the principal sheddase involved in P2X7-induced CD62L 

shedding. A metalloproteases was first implicated in this process when Ro 31-9790 was shown to 

inhibit P2X7-induced CD62L shedding in CLL cells [34]. Subsequently, a role for ADAM17 in this 

process was shown in murine B cells and T cells [39, 40]. In the absence of ADAM17, ADAM10 is 

able to mediated BzATP-induced CD62L shedding [39, 40]. However BzATP-stimulated CD62L 

shedding mediated by ADAM17 was significantly more rapid than shedding mediated by ADAM10 

[39], corroborating a role for ADAM17 as the principal sheddase. Such studies highlight the 
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complexity in ectodomain shedding, often revealing dominant but redundant roles for many 

sheddases. 

Other studies have identified other molecules important in P2X7-induced CD62L shedding. 

An inhibitor of phosphatidylserine exposure, 4,4’-diisothiocyanatosilbene-2,2’-disulphonic acid, 

prevented P2X7-induced CD62L shedding from murine effector/memory CD4+ T cells [70], 

indicating a role for rapid, non-apoptotic phosphatidylserine exposure in this process although the 

precise mechanism involved remains undefined. P2X7-induced CD62L shedding does not involve 

conventional PKC isoforms [55], PI3K, ERK or the NADPH oxidase [71]. In contrast, P2X7-

induced loss of CD62L from human CD4+ T cells was enhanced by diphenyleneiodonium, rotenone 

and antimycin A, which uncouple complexes of the mitochondrial respiratory chain to cause ROS 

formation [71]. Moreover, rottlerin, an inhibitor of novel PKC isoforms that can also promote ROS 

formation, potentiated P2X7-induced CD62L loss from human CD4+ T cells [71]. Although this 

study did not directly study ADAM17, ROS are able to activate ADAM17 via oxidation of cysteine 

motifs, which are critical for CD62L cleavage [72]. Therefore, ROS may play a role in P2X7-

induced activation of ADAM17 and subsequent shedding of CD62L. 

 

CD206 (macrophage mannose receptor 1) 

 

CD206 (macrophage mannose receptor 1) is a type I integral membrane glycoprotein mainly 

expressed on the surface of macrophages and dendritic cells, where it functions as an antigen 

receptor promoting phagocytosis of pathogens [73]. As for CD14, ATP induced the rapid shedding 

of CD206 from resting, M1 and M2 murine macrophages, a process impaired by A 438079 and GM 

6001, as well as in macrophages from Pfizer P2X7 knockout mice [26]. The specific 

metalloprotease mediating P2X7-induced CD206 shedding is yet to be determined. 
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CD324 (E-cadherin) 

 

CD324 (E-cadherin) is a type I integral membrane glycoprotein that mediates cell-to-cell adhesion 

in epithelial tissues, while loss of this molecule promotes cell migration including epithelial tumour 

metastasis [74]. In contrast to most studies that use exogenous ATP to induce ectodomain shedding, 

one study showed that melittin, the major component of bee venom, induced the rapid shedding of 

CD324 from human HaCaT keratinocytes via a purinergic pathway [75]. Although evidence for the 

specific P2 receptor involved in this process is limited, melittin caused ATP release from HaCaT 

keratinocytes, and the ATP-degrading enzyme, apyrase, and broad-spectrum P2 antagonists, 

PPADS, suramin and Evans Blue, impaired ERK1/2 phosphorylation, which was associated with 

melittin-induced CD324 shedding. Furthermore, P2X7-transfected, but not mock transfected, HEK 

293 cells showed increased melittin-induced phosphorylation of ERK, which could also be 

abrogated by apyrase [75]. Collectively, this suggested a role for an ATP-P2X7 axis in melittin-

induced CD324 shedding. Finally, BB-2516, GI 254023X and GW 280264X inhibited melittin-

induced CD324 shedding [75], thus, supporting a role for ADAM10 in this pathway. 

 

CXCL16 (CXC-chemokine ligand 16) 

 

CXCL16 (CXC-chemokine ligand 16) is a type I integral membrane glycoprotein, which 

predominantly functions as an adhesion receptor for cells expressing the CXC-chemokine receptor 

CXCR6, but can also serve as a scavenger receptor capable of binding cells displaying exposed 

phosphatidylserine or oxidised low-density lipoprotein [76]. Following shedding, soluble CXCL16 

can induce lymphocyte chemotaxis, promote angiogenesis and prevent excitotoxicity of neurons 

[76]. P2X7 activation can induce CXCL16 shedding and this process is mediated by ADAM10. 

ATP and BzATP, but neither ADP nor UTP, induced the rapid shedding of CXCL16 from RPMI 
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8226 cells, a process impaired by the P2X7 antagonists, KN-62 and AZ 10606120 [44]. Moreover, 

BB-94 and GM 6001, as well as GI 254023X, impaired ATP-induced CXCL16 shedding [44]. 

 

Epidermal growth factor members 

 

Activation of EGFR involves the binding of members of the epidermal growth factor (EGF) family 

including amphiregulin, betacellulin EGF, heparin-binding EGF-like growth factor (HB-EGF) and 

transforming growth factor-α (TGF-α) [77]. EGF family members are type I integral membrane 

proteins and ectodomain shedding of these proteins generates soluble ligands for EGFR [77]. EGF 

members are involved in the modulation of cell proliferation, apoptosis and migration, and play 

important roles in processes such as bone formation, wound healing and tumourigenesis [77].  

 

Amphiregulin 

ATP and ATPγS induced slow (24 hours) shedding of amphiregulin from LPS-stimulated human 

monocyte-derived and murine bone marrow-derived dendritic cells [78]. UTP also induced 

amphiregulin shedding from LPS-stimulated murine bone marrow-derived, but not from human 

monocyte-derived, dendritic cells [78]. Moreover, suramin inhibited ATPγS-induced amphiregulin 

shedding from human monocyte-derived dendritic cells [78], but the specific P2 receptors involved 

were not identified. Notably, amphiregulin released from murine bone marrow-derived dendritic 

cells stimulated tumour growth in vivo [78] indicating that nucleotides can confer tumourigenic 

properties to dendritic cells by inducing amphiregulin release. This contrasts the anti-tumourigenic 

properties of dendritic cells following P2X7 activation and subsequent NLRP3 inflammasome 

stimulation to promote anti-tumour immunity [79]. 

 

Betacellulin 
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BzATP induced the rapid shedding of betacellulin from betacellulin-transfected CHO cells, and 

from P2X7 and betacellulin co-transfected murine embryonic fibroblasts (mEFs) [39, 40]. BzATP-

induced betacellulin shedding was impaired by BB-2516 and GI 254023X, as well as by 

transfection of dominant-negative ADAM10 plasmid DNA [40]. GI 254023X impaired BzATP-

induced betacellulin shedding in ADAM17 knockout mEFs (which expressed ADAM10). 

Conversely, BzATP did not induce betacellulin shedding in ADAM10 knockout mEFs (which 

expressed ADAM17) [40]. Collectively, this indicated that P2X7 stimulates ADAM10 to induce 

betacellulin shedding. 

 

Heparin-binding epidermal growth factor-like growth factor (HB-EGF) 

The first indication of nucleotide-induced HB-EGF release was indirectly shown using a 

neutralising antibody against HB-EGF, which inhibited ATP-induced mitogenic effects in guinea 

pig Muller glial cells [80]. This study postulated that ATP-induced P2Y activation lead to the 

release of HB-EGF from cells, which mediated EGFR activation [80]. Later, direct evidence of 

nucleotide-induced HB-EGF shedding was shown using ATPγS in HB-EGF-transfected SV-40 

immortalised human corneal epithelial cells [81, 82]. Wounding, which increased ATP in the 

culture medium, as well as ADP, also induced rapid HB-EGF shedding from these cells [81, 82]. 

Reactive Blue 2 inhibited ATPγS-induced HB-EGF shedding [81] indicating a role for a P2 

receptor in this process. GM 6001, GW280264X [81] and GI 254023X [82] inhibited HB-EGF 

shedding from these cells. Furthermore, the mitogen-activated protein kinase kinase (MEK) and 

ERK1/2 inhibitors, PD98059 and U0126 respectively, impaired ATPγS- and wound-induced HB-

EGF shedding [81, 82]. Overall, these studies suggest that ADAM10, ADAM17, MEK and ERK1/2 

are involved in nucleotide-induced HB-EGF shedding from corneal epithelial cells, and that this 

process may be relevant during wound healing. However since Reactive Blue 2 and ATPγS can 
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inhibit and activate a range of P2X and P2Y receptors, respectively [6] further studies are required 

to determine which P2 receptor(s) is (are) involved in this process.  

 

Transforming growth factor-α  (TGF-α) 

Several studies have shown that nucleotides induce TGF-α shedding from cells. BzATP induced the 

rapid shedding of TGF-α from TGF-α-transfected CHO cells [40], and from P2X7 and TGF-α co-

transfected mEFs [39, 40]. TGF-α shedding from CHO cells was impaired by BB-2516, but not GI 

254023X [40], excluding a role for ADAM10 in the process. P2X7 was thought to be involved in 

this process, but direct evidence for this receptor is required, especially since P2Y receptors have 

also been implicated in TGF-α shedding as discussed below. 

Both ATP and UTP can induce rapid TGF-α shedding from TGF-α-transfected CHO cells, 

which express P2Y2 mRNA [42]. The broad-spectrum metalloprotease inhibitor, TAPI-2, inhibited 

ATP-induced TGF-α shedding from CHO cells, but ATP did not induce TGF-α shedding from 

CHO cells deficient in ADAM17 [42]. Moreover, ATP, ATPγS and UTP induced TGF-α shedding 

from EC-4 murine fibroblasts (which express ADAM17), but not from EC-2 murine fibroblasts 

(which are ADAM17 deficient) [42]. Collectively, this data indicates that P2Y2 activation 

stimulates ADAM17 to induce the rapid shedding of TGF-α, but an additional role for P2X7 in this 

process cannot be excluded. Further data from this study, using the Ca2+ chelators, 1,2-bis(o-

aminophenoxy)ethane- N,N,N',N'-tetraacetic acid (BAPTA-AM) and ethylene glycol-bis(2-

aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA), indicates that this process is regulated by both 

intracellular and extracellular Ca2+ [42]. Furthermore, this process involved mitochondrial, but not 

NADPH oxidase, ROS formation, as the ROS scavenger N-acetylcysteine, and the mitochondrial 

complex inhibitors, rotenone and myxothiazol, but not the NADPH oxidase inhibitor, apocynin, 

impaired ATP-induced TGF-α shedding [42]. 
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ATP also induced TGF-α shedding from human bronchial epithelial 1 cells over 2 hours 

[83], while melittin (which causes ATP release) induced rapid TGF-α shedding from HaCaT 

keratinocytes [75]. Although a role for P2 receptor activation in this process was only assessed in 

the former study and then only using the broad-spectrum P2 antagonist, suramin, this further 

supports a role for P2 receptor activation in TGF-α shedding. Notably both studies identified 

ADAM17 as the main sheddase involved in this process [75, 83]. Furthermore, through use of 

siRNA knockdown and chemical inhibitors, ATP-induced ADAM17 stimulation in human 

bronchial epithelial 1 cells was mediated by a pathway involving activation of the NADPH oxidase 

homolog dual oxidase 1 and ERK1/2 [83]. 

Collectively, the above studies suggest a role for both P2X7 and P2Y2 receptor activation in 

nucleotide-induced TGF-α shedding, and that this process is primarily mediated by ADAM17. 

However, further evidence is required to establish the specific roles for each receptor in this 

process. 

 

Immunoglobulin superfamily members 

 

Extracellular nucleotides induce the shedding of several molecules of the Ig superfamily including 

CD54, CD56, CD126, T cell immunoglobulin and mucin domain (TIM)-2, and possibly major 

histocompatibility complex (MHC) class I molecules. 

 

CD54 (intercellular adhesion molecule-1, ICAM-1) 

CD54 (intercellular adhesion molecule-1, ICAM-1) is a type I integral membrane glycoprotein 

important in cell adhesion mediating immune cell trafficking, antigen presentation and cell 

signalling [84]. BzATP stimulated the rapid shedding of CD54 from P2X7 and CD54 co-transfected 

mEFs, and from CHO cells [40], but a direct role for P2X7 in this process in CHO cells was not 
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directly established. GI 254023X inhibited BzATP-induced CD54 shedding in ADAM17 knockout 

mEF cells (which expressed ADAM10), but not in ADAM10 knockout mEF cells (which expressed 

ADAM17) [40]. Further, BzATP failed to induce CD54 shedding in ADAM10/ADAM17 knockout 

mEF cells [40], but this process could be reversed following transfection with ADAM17 [39]. 

BzATP-induced CD54 shedding from CHO cells was impaired by BB-2516 but not by GI 254023X 

[40]. Collectively, this suggested that ADAM17 is the main sheddase involved in BzATP-induced 

CD54 shedding when both ADAM10 and ADAM17 are present. 

 

CD56 (neural cell adhesion molecule, NCAM) 

CD56 (neural cell adhesion molecule, NCAM) is an integral membrane glycoprotein and comprises 

three major forms, with molecular weights of 120, 140 and 180 kDa [85]. These molecules are 

involved in cell adhesion, migration, and survival, as well as axon guidance and synaptic targeting 

[85]. ATP induced the shedding of all three forms from embryonic rat hippocampal neurons and 

from CD56-transfected L929 murine fibroblasts over 1.5 to 6 hours [86]. ATP, at concentrations of 

2.5 mM, was required to induce CD56 shedding [86], indicating a possible role for P2X7 in this 

process. The broad-spectrum metalloprotease inhibitors, BB-3103 and GM 6001, impaired ATP-

induced CD56 shedding from CD56-transfected L929 cells [86]. In contrast, ATP-induced CD56 

shedding was independent of lysosomal, proteasomal and calpain proteolytic activity, as well as 

PI3K and PKC activation [86]. Finally, the extracellular ATP binding site of CD56 was not required 

for ATP-induced CD56 shedding [86], indirectly supporting a role for a P2 receptor in this process. 

 

CD126 (interleukin-6 receptor, IL-6 receptor) 

IL-6 is a cytokine involved in homeostasis, as well as immune responses, and is secreted by both 

immune and non-immune cells [87]. This cytokine induces the proliferation and differentiation of T 

cells, macrophages and neutrophils, and can induce fever in the presence of tumour necrosis factor 
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(TNF) and IL-1β [87]. The biological activities of IL-6 are mediated by binding CD126 (IL-6 

receptor), a type I integral membrane glycoprotein, which subsequently recruits two integral 

membrane glycoproteins, CD130 (gp130), to form a signalling complex [87]. Alternatively, CD126 

shed from cells can bind IL-6 to form a complex with two membrane CD130 molecules to mediate 

signalling in cells that do not express CD126 or have shed this receptor [87]. P2X7 can mediate the 

rapid shedding of CD126. BzATP induced the rapid shedding of CD126 from wild-type murine 

splenocytes, a process impaired by KN-62 or in splenocytes from Pfizer P2X7 knockout [88]. 

Notably, CD126 serum concentrations from these knockout mice are reduced compared to wild-

type mice, suggesting a role for P2X7 in CD126 shedding in vivo [88]. GI 254023X and GW 

280264X both inhibited BzATP-induced CD126 shedding in P2X7 and CD126 co-transfected 

NIH3T3 mouse embryonic fibroblasts and HEK 293 cells, while the ADAM10 prodomain, A10-

(23-213), inhibited BzATP-induced CD126 shedding from wild-type murine T cells and T cells 

with minimal ADAM17 expression [88]. Thus, indicating that ADAM10, but not ADAM17, plays a 

predominant role in P2X7-induced CD126 shedding. 

 

Major histocompatibility complex (MHC) molecules 

MHC class I molecules are cell surface receptors comprised of a single transmembrane protein 

paired with β2 microglobulin, and are highly expressed on nearly all cell types [89]. MHC class I 

molecules present antigenic peptides to CD8+ T cells [89]. BzATP was shown to induce the loss of 

cell surface MHC class I molecules from murine CD8+ T cells [58], but the identity of the P2 

receptor involved, and whether this loss was due to shedding or internalisation was not determined. 

However, ATP also induced the rapid loss of MHC class I molecules from murine bone marrow-

derived macrophages from wild-type, but not Pfizer P2X7 knockout, mice [90]. Furthermore, the 

P2X7 antagonists, A 438079 and A 740003, impaired ATP-induced MHC class I molecule loss 

from these cells from wild-type mice [90]. Collectively, confirming a role for P2X7 in this process. 
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Use of GM 6001, or the Zn2+ chelator, N,N,N',N'-tetra-2-picolylethylenediamine, failed to impair 

ATP-induced MHC class I molecule loss [90] suggesting that this process was not due to shedding. 

Moreover, the lysosome cysteine protease inhibitor, E64, or the proteasome inhibitor, MG132, 

failed to impair ATP-induced MHC class I loss [90] suggesting that this process was not due to a 

lysosome-mediated pathway. Thus, the authors proposed that ATP-induced MHC class I loss was 

the result of microvesicle release rather than shedding. Consistent with this, P2X7 activation 

induced the release of MHC class II molecule-containing microvesicles and exosomes from murine 

macrophages and dendritic cells [91, 92], but did not induce a loss of MHC class II molecules from 

the surface of CLL cells [34]. Finally, P2X7 activation inhibited the release of the non-classical 

MHC molecule, soluble human leukocyte antigen-G, from LPS-activated peripheral blood 

mononuclear cells [93]. Collectively, these studies demonstrate a complex role for P2X7 activation 

in the loss of MHC molecules from cells, and it remains to be determined if P2 receptor activation 

induces ectodomain shedding of MHC molecules. 

 

T cell immunoglobulin and mucin domain-2 (TIM-2) 

T cell immunoglobulin and mucin domain (TIM) molecules are type I integral membrane 

glycoproteins comprising three members in humans (TIM-1, TIM-3 and TIM-4) and eight members 

(TIM1-8) in mice [94]. TIM-2 is present in mice, but not humans, and functions as a H-ferritin 

receptor on T helper 2 cells and B cells to modulate immune responses [94]. BzATP induced the 

rapid shedding of TIM-2 from murine splenic B cells, as well as from P2X7 and TIM-2 co-

transfected HEK 293 cells [95]. Both GI 254023X and GW 280264X inhibited BzATP-induced 

TIM-2 shedding from these cells [95], supporting a role for ADAM10 in this process. However a 

direct role for P2X7 activation in BzATP-induced TIM-2 shedding from splenic B cells remains to 

be established. 

 



	 22 

Tumour necrosis factor-related members 

 

TNF and TNF receptors (TNFRs) belong to TNF and TNFR superfamilies, respectively, and have 

numerous roles in biology including the immune, nervous and skeletal systems [96]. TNF is a 

proinflammatory cytokine that plays a critical role in inflammation and immunity by binding to 

TNFRs [97]. TNF functions as a transmembrane protein (to transmit signals as either a ligand or as 

a receptor) and as a soluble protein (ligand) following shedding by ADAM17 [97]. The type I 

integral membrane glycoprotein, CD27, is another member of the TNFR superfamily with 

important roles in immunity and tolerance [98]. CD27 binds CD70 and functions as both a 

membrane receptor and soluble molecule with biological activity [98]. 

 

CD27 

ATP induced a rapid loss of surface CD27 from murine B and T cells [99]. In contrast to most other 

studies, which utilised enzyme-linked immunosorbent assays or immunoblotting to directly 

demonstrate P2 receptor-induced ectodomain shedding, surface plasmon resonance was used to 

show that supernatants from ATP-treated splenocytes displayed significant binding to immobilised 

anti-CD27 antibody [99] indicating that ATP-induced loss of CD27 is due to shedding. BzATP 

induced CD27 shedding more potently than ATP, whilst ATP-induced CD27 shedding was 

impaired by KN-62 [99] indicating a role for P2X7 activation in this process. GM 6001 also 

impaired P2X7-induced CD27 shedding [99], indicating a role for a metalloprotease in this process, 

but the identity of which remains unknown. Inhibitors of tyrosine kinases, PI3K, MEK and p38 

MAPK did not impair P2X7-induced CD27 shedding [99]. Of note, NAD, released during tissue 

dissociation, promoted the P2X7-mediated loss of cell surface CD27 from murine splenic T 

regulatory cells and liver NK T cells, a process that could be impaired with a blocking nanobody 
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against ARTC2.2 [100, 101]. Thus, P2X7 activation can induce CD27 shedding from various 

lymphocyte subsets. 

 

CD120a (tumour necrosis factor receptor 1, TNFR1) 

The P2Y2 and P2Y4 agonist, UTP, induced the rapid shedding of CD120a (tumour necrosis factor 

receptor 1, TNFR1) from SV-40 immortalised human corneal epithelial cells, a process that was 

impaired by the broad-spectrum metalloprotease inhibitor, TAPI-1 [102]. Moreover, eye drops 

containing the P2Y2/P2Y4 agonist, Diquafosol, increased soluble CD120a in tears of patients with 

short break-up time dry eye [102]. Collectively, this suggests that P2Y2 or P2Y4 activation can 

induce CD120a shedding. Of note, P2Y2 is required for sustained TNF-induced Ca2+ oscillations in 

murine lung endothelial cells, a process that accompanies ADAM17-mediated CD120a shedding 

[103], providing indirect evidence that P2Y2 activation can induce CD120a shedding. 

 

Tumour necrosis factor (TNF) 

BzATP induced the rapid shedding of TNF from P2X7 and TNF co-transfected mEFs [40], and 

from either ADAM17 knockout mEF cells (which expressed ADAM10) or ADAM10 knockout 

mEF cells (which expressed ADAM17) [40]. Further, GI 254023X impaired BzATP-induced 

shedding of TNF in ADAM17 knockout mEF cells, but not in ADAM10 knockout mEF cells or 

normal CHO cells [40]. This indicates that ADAM10 contributes to BzATP-induced TNF shedding 

only in the absence of ADAM17, and that ADAM17, when present, is the main sheddase involved 

in this process. The contribution of P2X7 in this process remains to be established. 

 

Summary 
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In conclusion, it is evident that extracellular nucleotides through the activation of P2 receptors can 

mediate the ectodomain shedding of numerous cell surface molecules. Both P2X7 and P2Y2 appear 

to be the major P2 receptors involved in this process, with well-established roles for various cell 

surface molecules including amyloid precursor protein, CD23, CD27 and CD62L, although a role 

for P2X7 in amyloid precursor protein shedding remains to be clearly defined. Importantly, a 

number of studies have shown that P2 receptor-mediated ectodomain shedding for some molecules, 

such as ARTC2.2, CD62L and CD126, can occur in vivo, but such evidence for most molecules is 

still required. In addition, the biological significance of P2 receptor-mediated ectodomain shedding 

remains to be determined in nearly all cases. In most instances it remains unknown if the soluble 

molecules or the remaining transmembrane regions, following P2 receptor-mediated ectodomain 

shedding, have any biological properties, although this is often inferred from ectodomain shedding 

studies initiated by pathways other than purinergic signalling. Further, a large body of evidence 

supporting a role for P2 receptor-induced ectodomain shedding is based on immortalised cell lines 

and in many cases transfection of P2 receptors into such cell lines. Thus, further work is required to 

study this process in primary cells expressing endogenous P2 receptors, especially in human cell 

types. In this regard, the identity of the P2 receptors involved in nucleotide-induced ectodomain 

shedding remains to be determined in many cases. Finally, although the major sheddases, most 

notably ADAM10 and ADAM17, have been identified in many examples of P2 receptor-induced 

ectodomain shedding, it remains unclear in most instances how such metalloproteases are activated 

downstream of P2 receptor activation. 
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Figure legends 

 

Figure 1 Nucleotide-induced ectodomain shedding. ATP activates P2X7 receptors. NAD can 

also activate P2X7 via the ADP-ribosyltransferase, ARTC2.2. P2X7 activation can stimulate 

ADAM10 to induce the shedding of BTC, CD23, CD126, CD324, CXCL16 and TIM-2. P2X7 

activation can stimulate ADAM17 to induce the shedding of ART2.2C, CD54, CD62L, TGF-α and 

TNF. P2X7-induced shedding of CD62L can be enhanced by mitochondrial ROS formation. P2X7 

activation can stimulate a α-secretase to induce APP shedding via an intracellular signalling 

cascade involving Rho-kinase, ERK, JNK, ERM and PI3K. An opposing role for P2X7 in APP 

processing is also suggested, whereby APP processing is inhibited by GSK-3 downstream of P2X7 

activation. Finally, P2X7 activation can induce the shedding of CD14, CD21, CD27, CD44, CD56, 

CD206, and possibly MHC class I molecules, but the sheddases involved remain unknown. ATP 

and UTP can stimulate P2Y2 receptors. P2Y2 activation can stimulate ADAM17, via DUOX1 and 

mitochondrial ROS generating pathways, to induce the shedding of TGF-α. P2Y2 activation can 

stimulate ADAM10 and ADAM17 to induce the HB-EGF shedding via an intracellular signalling 

cascade involving ERK and PI3K. P2Y2 activation can also stimulate ADAM10 and ADAM17, 

which serve as an α-secretase, to induce APP shedding via an intracellular signalling cascade 

involving ERK, MAPK and PI3K. Finally, P2Y2 activation (or possibly activation of other P2Y 

receptors) can induce the shedding of AREG and CD120a, but the sheddases involved remain 
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unknown. Abbreviations: ADAM, a disintegrin and metalloprotease; ADP, adenosine 5’-

diphosphate; APP, amyloid precursor protein; AREG, amphiregulin; ATP, adenosine 5’-

triphosphate; BTC, betacellulin; CD21, complement receptor 2; CD23, IgE receptor; CD27, tumor 

necrosis factor receptor; CD44, hyaluronic acid receptor; CD54, intercellular adhesion molecule-1; 

CD56, neural cell adhesion molecule; CD62L, L-selectin; CD120a, tumor necrosis factor receptor 

1, CD126, interleukin-6 receptor; CD324, E-cadherin; CTF, carboxyl-terminal fragment; DUOX1, 

NADPH oxidase homolog dual oxidase 1; ERK, extracellular signal-regulated kinase; ERM, ezrin 

radixin moesin; GSK, glycogen synthase kinase; HB-EGF, heparin-binding-epidermal growth 

factor; JNK, c-Jun N-terminal kinase; MHC, major histocompatibility complex; NAD, nicotinamide 

adenine nucleotide; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; ROS, reactive oxygen 

species; TIM, T cell immunoglobulin and mucin domain; TGF, transforming growth factor; TNF, 

tumor necrosis factor; UTP, uridine 5’-triphosphate. 

 

Figure 2 APP processing pathways. The amyloidogenic pathway (left) is (1) initiated with the 

cleavage of APP by β-secretase (2) to generate sAPPβ and β-CTF. (3) β-CTF is subsequently 

cleaved by γ-secretase (4) to generate Aβ. The anti-amyloidogenic pathway (right) is (1) initiated 

with the cleavage of APP by α-secretase (2) to generate sAPPα and α-CTF. (3) α-CTF is 

subsequently cleaved by γ-secretase (4) to generate truncated Aβ peptide termed p3. Abbreviations: 

APP, amyloid precursor protein; sAPPβ, soluble amyloid precursor protein β; β-CTF, β-carboxyl-

terminal fragment; sAPPα, soluble amyloid precursor protein α; α-CTF, α-carboxyl-terminal 

fragment. (After [14].) 
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Table 1 Sheddase inhibitors used in studies of nucleotide- and P2 receptor-induced ectodomain 

shedding 

Inhibitor Target Reference 

A10-(23-213)a ADAMb10 [43] 

BB-2516 (marimastat) Metalloproteases (broad-
spectrum) [104] 

BB-3103 Metalloproteases (broad-
spectrum) [105] 

BB-94 (batimastat) Metalloproteases (broad-
spectrum) [106] 

Decanoyl-RVKR-CMK Convertase (non-selective) [107] 

GI 254023X ADAM10 [108] 

GM 6001 Metalloproteases (broad-
spectrum) [109] 

GW 280264X ADAM10 and ADAM17 [108] 

Phenanthroline Metalloproteases (broad-
spectrum) [110] 

Ro 31-9790 Metalloproteases (broad-
spectrum) [111] 

TAPI-1 Metalloproteases (broad-
spectrum) [112] 

TAPI-2 Metalloproteases (broad-
spectrum) [113] 

aProdomain construct, bADAM, a disintegrin and metalloprotease 
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