222 research outputs found

    Observations of deep coral and sponge assemblages in Olympic Coast National Marine Sanctuary, Washington. Cruise Report: NOAA Ship McArthur II Cruise AR06-07/07

    Get PDF
    From May 22 to June 4, 2006, NOAA scientists led a research cruise using the ROPOS Remotely Operated Vehicle (ROV) to conduct a series of dives at targeted sites in the Olympic Coast National Marine Sanctuary (OCNMS) with the goal of documenting deep coral and sponge communities. Dive sites were selected from areas for which OCNMS had side scan sonar data indicating the presence of hard or complex substrate. The team completed 11 dives in sanctuary waters ranging from six to 52 hours in length, at depths ranging from 100 to 650 meters. Transect surveys were completed at 15 pre-selected sites, with additional observations made at five other sites. The survey locations included sites both inside and outside the Essential Fish Habitat (EFH) Conservation Area, known as Olympic 2, established by the Pacific Fishery Management Council, enacted on June 12, 2006. Bottom trawling is prohibited in the Olympic 2 Conservation Area for nontribal fishermen. The Conservation Area covers 159.4 square nautical miles or about 15 percent of the sanctuary. Several species of corals and sponges were documented at 14 of the 15 sites surveyed, at sites both inside and outside the Conservation Area, including numerous gorgonians and the stony corals Lophelia pertusa and Desmophyllum dianthus, as well as small patches of the reef building sponge Farrea occa. The team also documented Lophelia sp. and Desmophyllum sp. coral rubble, dead gorgonians, lost fishing gear, and other anthropogenic debris, supporting concerns over potential risks of environmental disturbances to coral health. (PDF contains 60 pages.

    8-hydroxyquinoline-2-carboxylic acid as possible molybdophore: A multi-technique approach to define its chemical speciation, coordination and sequestering ability in aqueous solution

    Get PDF
    8-hydroxyquinoline-2-carboxylic acid (8-HQA) has been found in high concentrations (0.5–5.0 mmol·dm−3) in the gut of Noctuid larvae (and in a few other lepidopterans), in which it is proposed to act as a siderophore. Since it is known that many natural siderophores are also involved in the uptake and metabolism of other essential elements than iron, this study reports some results on the investigation of 8-HQA interactions with molybdate (MoO42−, i.e., the main molybdenum form in aqueous environments), in order to understand the possible role of this ligand as molybdophore. A multi-technique approach has been adopted, in order to derive a comprehensive set of information necessary to assess the chemical speciation of the 8-HQA/MoO42− system, as well as the coordination behavior and the sequestering ability of 8-HQA towards molybdate. Chemical speciation studies have been performed in KCl(aq) at I = 0.2 mol·dm−3 and T = 298.15 K by ISE-H+ (glass electrode) potentiometric and UV/Vis spectrophotometric titrations. CV (Cyclic Voltammetry), DP-ASV (Differential Pulse-Anodic Stripping Voltammetry), ESI-MS experiments and quantum mechanical calculations have been also performed to derive information about the nature and possible structure of species formed. These results are also compared with those reported for the 8-HQA/Fe3+ system in terms of chemical speciation and sequestering ability of 8HQA

    Transgenic Expression of Nonclassically Secreted FGF Suppresses Kidney Repair

    Get PDF
    FGF1 is a signal peptide-less nonclassically released growth factor that is involved in angiogenesis, tissue repair, inflammation, and carcinogenesis. The effects of nonclassical FGF export in vivo are not sufficiently studied. We produced transgenic mice expressing FGF1 in endothelial cells (EC), which allowed the detection of FGF1 export to the vasculature, and studied the efficiency of postischemic kidney repair in these animals. Although FGF1 transgenic mice had a normal phenotype with unperturbed kidney structure, they showed a severely inhibited kidney repair after unilateral ischemia/reperfusion. This was manifested by a strong decrease of postischemic kidney size and weight, whereas the undamaged contralateral kidney exhibited an enhanced compensatory size increase. In addition, the postischemic kidneys of transgenic mice were characterized by hyperplasia of interstitial cells, paucity of epithelial tubular structures, increase of the areas occupied by connective tissue, and neutrophil and macrophage infiltration. The continuous treatment of transgenic mice with the cell membrane stabilizer, taurine, inhibited nonclassical FGF1 export and significantly rescued postischemic kidney repair. It was also found that similar to EC, the transgenic expression of FGF1 in monocytes and macrophages suppresses kidney repair. We suggest that nonclassical export may be used as a target for the treatment of pathologies involving signal peptide-less FGFs

    Optical imaging in vivo with a focus on paediatric disease: technical progress, current preclinical and clinical applications and future perspectives

    Get PDF
    To obtain information on the occurrence and location of molecular events as well as to track target-specific probes such as antibodies or peptides, drugs or even cells non-invasively over time, optical imaging (OI) technologies are increasingly applied. Although OI strongly contributes to the advances made in preclinical research, it is so far, with the exception of optical coherence tomography (OCT), only very sparingly applied in clinical settings. Nevertheless, as OI technologies evolve and improve continuously and represent relatively inexpensive and harmful methods, their implementation as clinical tools for the assessment of children disease is increasing. This review focuses on the current preclinical and clinical applications as well as on the future potential of OI in the clinical routine. Herein, we summarize the development of different fluorescence and bioluminescence imaging techniques for microscopic and macroscopic visualization of microstructures and biological processes. In addition, we discuss advantages and limitations of optical probes with distinct mechanisms of target-detection as well as of different bioluminescent reporter systems. Particular attention has been given to the use of near-infrared (NIR) fluorescent probes enabling observation of molecular events in deeper tissue

    Downscaling Climate Change Impacts, Socio-Economic Implications and Alternative Adaptation Pathways for Islands and Outermost Regions

    Get PDF
    This book provides a comprehensive overview of the future scenarios of climate change and management concerns associated with climate change impacts on the blue economy of European islands and outermost regions. The publication collects major findings of the SOCLIMPACT project’s research outcomes, aiming to raise social awareness among policy-makers and industry about climate change consequences at local level, and provide knowledge-based information to support policy design, from local to national level. This comprehensive book will also assist students, scholars and practitioners to understand, conceptualize and effectively and responsibly manage climate change information and applied research. This book provides invaluable material for Blue Growth Management, theory and application, at all levels. This first edition includes up-to-date data, statistics, references, case material and figures of the 12 islands case studies. ¨Downscaling climate change impacts, socio-economic implications and alternative adaptation pathways for Islands and Outermost Regions¨ is a must-read book, given the accessible style and breadth and depth with which the topic is dealt. The book is an up-to-date synthesis of key knowledge on this area, written by a multidisciplinary group of experts on climate and economic modelling, and policy design

    Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection

    Get PDF
    The molecular mechanisms that drive mucosal T helper type 2 (T[subscript H]2) responses against parasitic helminths and allergens remain unclear. In this study, we demonstrate in mice that TFF2 (trefoil factor 2), an epithelial cell–derived repair molecule, is needed for the control of lung injury caused by the hookworm parasite Nippostrongylus brasiliensis and for type 2 immunity after infection. TFF2 is also necessary for the rapid production of IL-33, a T[subscript H]2-promoting cytokine, by lung epithelia, alveolar macrophages, and inflammatory dendritic cells in infected mice. TFF2 also increases the severity of allergic lung disease caused by house dust mite antigens or IL-13. Moreover, TFF2 messenger RNA expression is significantly increased in nasal mucosal brushings during asthma exacerbations in children. These experiments extend the biological functions of TFF2 from tissue repair to the initiation and maintenance of mucosal T[subscript H]2 responses

    National Culture and Women Managers: Evidence from Microfinance Institutions around the World

    Get PDF
    We investigate the effect of national culture on women manager appointments. We argue that culture influences women manager appointments through their effects on managerial decision-making. Using firm-level data on 2456 microfinance institutions (MFIs) across 61 countries, we document that fewer women managers are appointed in societies high on individualism and uncertainty avoidance. On the contrary, high power distance societies are positively associated with the appointment of women managers. We demonstrate that a greater number of women non-managers reduces (increases) the appointment of women managers in high individualistic (uncertainty avoidance) cultures. Our findings challenge the “one size fit all” approach adopted by policymakers around the world to increase women manager appointments. Our results are robust to endogeneity

    Coenzyme Q10 Reduces Ethanol-Induced Apoptosis in Corneal Fibroblasts

    Get PDF
    Dilute ethanol (EtOH) is a widely used agent to remove the corneal epithelium during the modern refractive surgery. The application of EtOH may cause the underlying corneal fibroblasts to undergo apoptosis. This study was designed to investigate the protective effect and potential mechanism of the respiratory chain coenzyme Q10 (CoQ10), an electron transporter of the mitochondrial respiratory chain and a ubiquitous free radical scavenger, against EtOH-induced apoptosis of corneal fibroblasts. Corneal fibroblasts were pretreated with CoQ10 (10 µM) for 2 h, followed by exposure to different concentrations of EtOH (0.4, 2, 4, and 20%) for 20 s. After indicated incubation period (2–12 h), MTT assay was used to examine cell viability. Treated cells were further assessed by flow cytometry to identify apoptosis. Reactive oxygen species (ROS) and the change in mitochondrial membrane potential were assessed using dichlorodihydrofluorescein diacetate/2′,7′-dichlorofluorescein (DCFH-DA/DCF) assays and flow-cytometric analysis of JC-1 staining, respectively. The activity and expression of caspases 2, 3, 8, and 9 were evaluated with a colorimetric assay and western blot analysis. We found that EtOH treatment significantly decreased the viability of corneal fibroblasts characterized by a higher percentage of apoptotic cells. CoQ10 could antagonize the apoptosis inducing effect of EtOH. The inhibition of cell apoptosis by CoQ10 was significant at 8 and 12 h after EtOH exposure. In EtOH-exposed corneal fibroblasts, CoQ10 pretreatment significantly reduced mitochondrial depolarization and ROS production at 30, 60, 90, and 120 min and inhibited the activation and expression of caspases 2 and 3 at 2 h after EtOH exposure. In summary, pretreatment with CoQ10 can inhibit mitochondrial depolarization, caspase activation, and cell apoptosis. These findings support the proposition that CoQ10 plays an antiapoptotic role in corneal fibroblasts after ethanol exposure
    corecore