707 research outputs found
Apollo experience report: Real-time display system
The real time display system used in the Apollo Program is described; the systematic organization of the system, which resulted from hardware/software trade-offs and the establishment of system criteria, is emphasized. Each basic requirement of the real time display system was met by a separate subsystem. The computer input multiplexer subsystem, the plotting display subsystem, the digital display subsystem, and the digital television subsystem are described. Also described are the automated display design and the generation of precision photographic reference slides required for the three display subsystems
Heat-Transfer and Pressure Measurements on a Flat-Face Cylinder at a Mach Number Range of 2.49 to 4.44
Heat-transfer coefficients and pressure distributions were obtained on a 4-inch-diameter flat-face cylinder in the Langley Unitary Plan wind tunnel. The measured stagnation heat-transfer coefficient agrees well with 55 percent of the theoretical value predicted by the modified Sibulkin method for a hemisphere. Pressure measurements indicated the dimensionless velocity gradient parameter r du\ a(sub t) dx, where x=0 at the stagnation point was approximately 0.3 and invariant throughout the Mach number range from 2.49 to 4.44 and the Reynolds number range from 0.77 x 10(exp 6) to 1.46 x 10(exp 6). The heat-transfer coefficients on the cylindrical afterbody could be predicted with reasonable accuracy by flat-plate theory at an angle of attack of 0 deg. At angles of attack the cylindrical afterbody stagnation-line heat transfer could be computed from swept-cylinder theory for large distances back of the nose when the Reynolds number is based on the distance from the flow reattachment points
Along-Strike Growth of the Ostler Fault, New Zealand: Consequences for Drainage Deflection above Active Thrust
Rarely are geologic records available to constrain the spatial and temporal evolution of thrustâfault growth as slip accumulates during repeated earthquake events. Here, we utilize multiple generations of dated and deformed fluvial terraces to explore two key aspects of the alongâstrike kinematic development of the Ostler fault zone in southern New Zealand over the past âŒ100 k.y.: accumulation of fault slip through space and time and fixedâlength thrust growth that results in patterns of drainage diversion suggestive of laterally propagating faults. Along the Ostler fault, surface deformation patterns revealed by topographic surveying of terrace profiles in nine transverse drainages define systematic variations in fault geometry and suggest deformation over both listric and planar thrust ramps. Kinematic modeling of folded terrace profiles and \u3e100 faultâscarp surveys along major fault sections reveals remarkably similar slip distributions for multiple successions of geomorphic surfaces spanning âŒ100 k.y. Spatially abrupt and temporally sustained displacement gradients across zones of fault section overlap suggest that either persistent barriers to fault propagation or interference between overlapping faults dominate the interactions of fault tips from the scale of individual scarps to the entire fault zone. Deformed terrace surfaces dated using optically stimulated luminescence and cosmogenic radionuclides indicate steady, maximum rates of fault slip of âŒ1.9 mm/yr during the Late Quaternary. Slip data synthesized along the central Ostler fault zone imply that displacement accumulated at approximately constant fault lengths over the past âŒ100 k.y. A northward temporal progression of abandoned wind gaps along this section thus reflects lateral tilting in response to amplification of displacement, rather than simple fault lengthening or lateral propagation. Oscillations of climate at âŒ104âyr time scales modulate the formation and incision of geomorphic surfaces during successive glacial stages. Superimposed on apparently steadier rates of fault slip, such climateâdependent surfaces contribute to a pattern of progressive drainage deflection along the central Ostler fault zone that is largely independent of fault propagation
Geomorphic Constraints on Listric Thrust Faulting: Implications for Active Deformation in the Mackenzie Basin, South Island, New Zealand
Deformed fluvial terraces preserved over active thrust-related folds record the kinematics of folding as fault slip accumulates on the underlying thrust. In the Mackenzie Basin of southern New Zealand, the kinematics revealed by folded fluvial terraces along the active Ostler and Irishman Creek fault zones are inconsistent with traditional models for thrust-related folding in which spatially uniform rock uplift typically occurs over planar fault ramps. Instead, warped and tilted terraces in the Mackenzie are characterized by broad, continuous backlimbs and abrupt forelimbs and suggest folding through progressive limb rotation. By relating this pattern of surface deformation to the underlying thrust with a newly developed, simple geometric and kinematic model, we interpret both faults as listric thrusts rooted at depth into gently dipping planar fault ramps. Constraints on the model from detailed topographic surveying of deformed terraces, ground-penetrating radar over active fault scarps, and luminescence dating of terrace surfaces suggest slip rates for the Ostler and Irishman Creek faults of ~1.1â 1.7 mm/yr and~0.5â0.7 mm/yr, respectively. The predicted depth of listric faulting for the Ostler fault (0.70 +0.1-0.2 km) and the Irishman Creek fault (1.3+0.1-0.5 km) generally agrees with geophysical estimates of basin depth in the Mackenzie and suggests control of preexisting basin architecture on the geometry of active thrusting. Despite the potential effects of changes in fault curvature and hanging wall internal deformation, the methodology presented here provides a simple tool for approximating the kinematics of surface deformation associated with slip along listric, or curviplanar, thrust faults
Environmental determinants of allergy and asthma in early life
Allergic disease prevalence has increased significantly in recent decades. Primary prevention efforts are being guided by study of the exposome (or collective environmental exposures beginning during the prenatal period) to identify modifiable factors that affect allergic disease risk. In this review we explore the evidence supporting a relationship between key components of the external exposome in the prenatal and early-life periods and their effect on atopy development focused on microbial, allergen, and air pollution exposures. The abundance and diversity of microbial exposures during the first months and years of life have been linked with risk of allergic sensitization and disease. Indoor environmental allergen exposure during early life can also affect disease development, depending on the allergen type, dose, and timing of exposure. Recent evidence supports the role of ambient air pollution in allergic disease inception. The lack of clarity in the literature surrounding the relationship between environment and atopy reflects the complex interplay between cumulative environmental factors and genetic susceptibility, such that no one factor dictates disease development in all subjects. Understanding the effect of the summation of environmental exposures throughout a child's development is needed to identify cost-effective interventions that reduce atopy risk in children
Physical and Mental Health-Related Correlates of Physical Function in Community Dwelling Older Adults: A Cross Sectional Study
Background
Physical function is the ability to perform both basic and instrumental activities of daily living, and the ability of older adults to reside in the community depends to a large extent on their level of physical function. Multiple physical and health-related variables may differentially affect physical function, but they have not been well characterized. The purpose of this investigation was to identify and examine physical and mental health-related correlates of physical function in a sample of community-dwelling older adults.
Methods
Nine hundred and four community dwelling older men (n = 263) and women (n = 641) with a mean (95% Confidence Interval) age of 76.6 (76.1, 77.1) years underwent tests of physical function (Timed Up and Go; TUG), Body Mass Index (BMI) was calculated from measured height and weight, and data were collected on self-reported health quality of life (SF-36), falls during the past 6 months, number of medications per day, depression (Geriatric Depression Scale; GDS), social support, and sociodemographic variables.
Results
Subjects completed the TUG in 8.7 (8.2, 9.2) seconds and expended 6,976 (6,669, 7,284) Kcal.wk-1 in physical activity. The older persons had a mean BMI of 27. 6 (27.2, 28.0), 62% took 3 or more medications per day, and14.4% had fallen one or more times over the last 6 months. Mean scores on the Mental Component Summary (MCS) was 50.6 (50.2, 51,0) and the Physical Component Summary (PCS) was 41.3 (40.8, 41.8).
Multiple sequential regression analysis showed that, after adjustment for TUG floor surface correlates of physical function included age, sex, education, physical activity (weekly energy expenditure), general health, bodily pain, number of medications taken per day, depression and Body Mass Index. Further, there is a dose response relationship such that greater degree of physical function impairment is associated with poorer scores on physical health-related variables.
Conclusions
Physical function in community-dwelling older adults is associated with several physical and mental health-related factors. Further study examining the nature of the relationships between these variables is needed
Education and Outreach in the Life Sciences: Qualitative Analysis Report
The DOE's National Nuclear Security Agency (NNSA) asked Pacific Northwest National Laboratory (PNNL) to consider the role of individual scientists in upholding safety and security. The views of scientists were identified as being a critical component of this policy process. Therefore, scientists, managers, and representatives of Institutional Biosafety Committees (IBCs) at the national labs were invited to participate in a brief survey and a set of focus groups. In addition, three focus groups were conducted with scientists, managers, and IBC representatives to discuss some of the questions related to education, outreach, and codes of conduct in further detail and gather additional input on biosecurity and dual-use awareness at the laboratories. The overall purpose of this process was to identify concerns related to these topics and to gather suggestions for creating an environment where both the scientific enterprise and national security are enhanced
Temporal changes in rock uplift rates of folds in the foreland of the Tian Shan and the Pamir from geodetic and geologic data
Understanding the evolution of continental deformation zones relies on quantifying spatial and temporal changes in deformation rates of tectonic structures. Along the eastern boundary of the PamirâTian Shan collision zone, we constrain secular variations of rock uplift rates for a series of five Quaternary detachmentâ and faultârelated folds from their initiation to the modern day. When combined with GPS data, decomposition of interferometric synthetic aperture radar time series constrains the spatial pattern of surface and rock uplift on the folds deforming at decadal rates of 1â5 mm/yr. These data confirm the previously proposed basinward propagation of structures during the Quaternary. By fitting our geodetic rates and previously published geologic uplift rates with piecewise linear functions, we find that gradual rate changes over >100 kyr can explain the interferometric synthetic aperture radar observations where changes in average uplift rates are greater than ~1 mm/yr among different time intervals (~10Âč, 10âŽâŸâ”, and 10â”âŸâ¶ years)
âTeam GBâ and London 2012: The Paradox of National and Global Identities
This article explores the problems associated with ânational identityâ in the UK and examines the tensions arising between the international and local dimensions of the games through examples of domestic (UK) and international (Brazil, Chicago) media coverage of the key debates relating to Londonâs period of preparation. The chapter proposes a conception of London 2012 as exemplar of an event poised to generate insights and experiences connected to a new politics of âcosmopolitanâ identity; insights central to grasping the cultural politics of contemporary urban development-and the paradoxes of national identity in current discourses of Olympism. Properly speaking, cosmopolitanism suits those people who have no country, while internationalism should be the state of mind of those who love their country above all, who seek to draw to it the friendship of foreigners by professing for the countries of those foreigners an intelligent and enlightened sympathy. © 2010 Taylor & Francis
Women, anger, and aggression an interpretative phenomenological analysis
This study reports a qualitative phenomenological investigation of anger and anger-related aggression in the context of the lives of individual women. Semistructured interviews with five women are analyzed using interpretative phenomenological analysis. This inductive approach aims to capture the richness and complexity of the lived experience of emotional life. In particular, it draws attention to the context-dependent and relational dimension of angry feelings and aggressive behavior. Three analytic themes are presented here: the subjective experience of anger, which includes the perceptual confusion and bodily change felt by the women when angry, crying, and the presence of multiple emotions; the forms and contexts of aggression, paying particular attention to the range of aggressive strategies used; and anger as moral judgment, in particular perceptions of injustice and unfairness. The authors conclude by examining the analytic observations in light of phenomenological thinking
- âŠ