471 research outputs found

    Blunt cones in rarefied hypersonic flow: Experiments and Monte-Carlo simulations

    Get PDF
    The drag coefficients for cones with hot and cold walls and different bluntness ratios have been found experimentally. There is a small wall temperature effect which can be accounted for by the change in the pressure drag that occurs in the free molecular limiting flow. The results from the Monte-Carlo calculations agree well with the experiments and they show that the flow field is characterised by the free molecular behaviour at least as far as Knudsen = 0.02 (based on bade diameter) and that the shear drag is the predominant force. From the experimental results it seems reasonable to conclude that the flow fields are characterised by the free molecular behaviour down to the lowest value of Knudsen number tested, which was 0.006. The nose bluntness effect on the measured drag can be correlated by normalising the coefficient by the value in the free molecular limit and by defining a Knudsen number based on the cone lengt

    Bacterial Butyrate in Parkinson's Disease Is Linked to Epigenetic Changes and Depressive Symptoms

    Get PDF
    Background The gut microbiome and its metabolites can impact brain health and are altered in Parkinson's disease (PD) patients. It has been recently demonstrated that PD patients have reduced fecal levels of the potent epigenetic modulator butyrate and its bacterial producers. Objectives Here, we investigate whether the changes in the gut microbiome and associated metabolites are related to PD symptoms and epigenetic markers in leucocytes and neurons. Methods Stool, whole blood samples, and clinical data were collected from 55 PD patients and 55 controls. We performed DNA methylation analysis on whole blood samples and analyzed the results in relation to fecal short-chain fatty acid concentrations and microbiota composition. In another cohort, prefrontal cortex neurons were isolated from control and PD brains. We identified genome-wide DNA methylation by targeted bisulfite sequencing. Results We show that lower fecal butyrate and reduced counts of genera Roseburia, Romboutsia, and Prevotella are related to depressive symptoms in PD patients. Genes containing butyrate-associated methylation sites include PD risk genes and significantly overlap with sites epigenetically altered in PD blood leucocytes, predominantly neutrophils, and in brain neurons, relative to controls. Moreover, butyrate-associated methylated-DNA regions in PD overlap with those altered in gastrointestinal (GI), autoimmune, and psychiatric diseases. Conclusions Decreased levels of bacterially produced butyrate are related to epigenetic changes in leucocytes and neurons from PD patients and to the severity of their depressive symptoms. PD shares common butyrate-dependent epigenetic changes with certain GI and psychiatric disorders, which could be relevant for their epidemiological relation. (c) 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder SocietyPeer reviewe

    A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone

    Full text link
    Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways; (ii) the concentrations in the tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, it is deduced that measured end-tidal breath concentrations of acetone determined during resting conditions and free breathing will be rather poor indicators for endogenous levels. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases.Comment: 38 page

    Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury

    Get PDF
    Olfactory ensheathing cell (OEC) transplantation is a promising strategy for treating spinal cord injury (SCI), as has been demonstrated in experimental SCI models and naturally occurring SCI in dogs. However, the presence of chondroitin sulphate proteoglycans within the extracellular matrix of the glial scar can inhibit efficient axonal repair and limit the therapeutic potential of OECs. Here we have used lentiviral vectors to genetically modify canine OECs to continuously deliver mammalian chondroitinase ABC at the lesion site in order to degrade the inhibitory chondroitin sulphate proteoglycans in a rodent model of spinal cord injury. We demonstrate that these chondroitinase producing canine OECs survived at 4 weeks following transplantation into the spinal cord lesion and effectively digested chondroitin sulphate proteoglycans at the site of injury. There was evidence of sprouting within the corticospinal tract rostral to the lesion and an increase in the number of corticospinal axons caudal to the lesion, suggestive of axonal regeneration. Our results indicate that delivery of the chondroitinase enzyme can be achieved with the genetically modified OECs to increase axon growth following SCI. The combination of these two promising approaches is a potential strategy for promoting neural regeneration following SCI in veterinary practice and human patients

    The Adult Human Brain Harbors Multipotent Perivascular Mesenchymal Stem Cells

    Get PDF
    Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain

    The importance of sedimenting organic matter, relative to oxygen and temperature, in structuring lake profundal macroinvertebrate assemblages

    Get PDF
    We quantified the role of a main food resource, sedimenting organic matter (SOM), relative to oxygen (DO) and temperature (TEMP) in structuring profundal macroinvertebrate assemblages in boreal lakes. SOM from 26 basins of 11 Finnish lakes was analysed for quantity (sedimentation rates), quality (C:N:P stoichiometry) and origin (carbon stable isotopes, d13C). Hypolimnetic oxygen and temperature were measured from each site during summer stratification. Partial canonical correspondence analysis (CCA) and partial regression analyses were used to quantify contributions of SOM, DO and TEMP to community composition and three macroinvertebrate metrics. The results suggested a major contribution of SOM in regulating the community composition and total biomass. Oxygen best explained the Shannon diversity, whereas TEMP had largest contribution to the variation of Benthic Quality Index. Community composition was most strongly related to d13C of SOM. Based on additional d13C and stoichiometric analyses of chironomid taxa, marked differences were apparent in their utilization of SOM and body stoichiometry; taxa characteristic of oligotrophic conditions exhibited higher C:N ratios and lower C:P and N:P ratios compared to the species typical of eutrophic lakes. The results highlight the role of SOM in regulating benthic communities and the distributions of individual species, particularly in oligotrophic systems

    Common Features at the Start of the Neurodegeneration Cascade

    Get PDF
    A single-molecule study reveals that neurotoxic proteins share common structural features that may trigger neurodegeneration, thus identifying new targets for therapy and diagnosis

    β-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides

    Get PDF
    Protein misfolding disorders are associated with conformational changes in specific proteins, leading to the formation of potentially neurotoxic amyloid fibrils. During pathogenesis of prion disease, the prion protein misfolds into β-sheet rich, protease-resistant isoforms. A key, hydrophobic domain within the prion protein, comprising residues 109–122, recapitulates many properties of the full protein, such as helix-to-sheet structural transition, formation of fibrils and cytotoxicity of the misfolded isoform. Using all-atom, molecular simulations, it is demonstrated that the monomeric 109–122 peptide has a preference for α-helical conformations, but that this peptide can also form β-hairpin structures resulting from turns around specific glycine residues of the peptide. Altering a single amino acid within the 109–122 peptide (A117V, associated with familial prion disease) increases the prevalence of β-hairpin formation and these observations are replicated in a longer peptide, comprising residues 106–126. Multi-molecule simulations of aggregation yield different assemblies of peptide molecules composed of conformationally-distinct monomer units. Small molecular assemblies, consistent with oligomers, comprise peptide monomers in a β-hairpin-like conformation and in many simulations appear to exist only transiently. Conversely, larger assemblies are comprised of extended peptides in predominately antiparallel β-sheets and are stable relative to the length of the simulations. These larger assemblies are consistent with amyloid fibrils, show cross-β structure and can form through elongation of monomer units within pre-existing oligomers. In some simulations, assemblies containing both β-hairpin and linear peptides are evident. Thus, in this work oligomers are on pathway to fibril formation and a preference for β-hairpin structure should enhance oligomer formation whilst inhibiting maturation into fibrils. These simulations provide an important new atomic-level model for the formation of oligomers and fibrils of the prion protein and suggest that stabilization of β-hairpin structure may enhance cellular toxicity by altering the balance between oligomeric and fibrillar protein assemblies

    Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus

    Get PDF
    A major barrier to research on Parkinson's disease is inaccessibility of diseased tissue for study. One solution is to derive induced pluripotent stem cells from patients and differentiate them into neurons affected by disease. Triplication of SNCA, encoding α-synuclein, causes a fully penetrant, aggressive form of Parkinson's disease with dementia. α-Synuclein dysfunction is the critical pathogenic event in Parkinson's disease, multiple system atrophy and dementia with Lewy bodies. Here we produce multiple induced pluripotent stem cell lines from an SNCA triplication patient and an unaffected first-degree relative. When these cells are differentiated into midbrain dopaminergic neurons, those from the patient produce double the amount of α-synuclein protein as neurons from the unaffected relative, precisely recapitulating the cause of Parkinson's disease in these individuals. This model represents a new experimental system to identify compounds that reduce levels of α-synuclein, and to investigate the mechanistic basis of neurodegeneration caused by α-synuclein dysfunction
    • …
    corecore