57 research outputs found

    The CASPER project: an integrated approach for pollution risk assessment in peri-urban groundwater catchment areas

    Get PDF
    In 2020, the European Union has established a recast of the 1998 EU Directive on the quality of water intended for human consumption, hereafter called Drinking Water Directive – DWD. One of the most significant innovative point in this recast is the introduction of an innovative “complete risk-based approach to water safety, covering the whole supply chain from the catchment area, abstraction, treatment, storage and distribution to the point of compliance” (article 7). In practice, a 3-level risk assessment and risk management is expected: (1) at the level of the catchment area (article 8), (2) at the level of the water supply systems (article 9) and (3) at the level of the domestic distribution system (article 10). In this context, the CASPER project, funded by SPGE in the Walloon Region of Belgium, aims at developing an integrated approach for the evaluation and management of pollution risks for peri-urban groundwater catchments. The approach, which fully complies with the requirements of the DWD recast, consists of several key components. First, point and diffuse pollution sources are identified in the groundwater catchment area based on a mapping of hazardous activities combined with a specific groundwater monitoring survey aiming at identifying specific tracers of such sources of pollution. In a second step, risks associated to each of the identified source of pollution is estimated based on the measurement of pollutant mass fluxes and mass discharges downgradient these sources. Finally, a groundwater flow and transport model is developed at the scale of the groundwater catchment area, with the aim of evaluating the cumulative effect of the multiple sources on groundwater quality deterioration in the catchment and at the abstraction points. The objective here is to describe the CASPER approach and to illustrate it using ongoing investigations in a peri-urban groundwater catchment exploiting groundwater from a chalk aquifer in Western Belgium.</p

    Use of dual carbon–chlorine isotope analysis to assess the degradation pathways of 1,1,1-trichloroethane in groundwater

    Get PDF
    Compound-specific isotope analysis (CSIA) is a powerful tool to track contaminant fate in groundwater. However, the application of CSIA to chlorinated ethanes has received little attention so far. These compounds are toxic and prevalent groundwater contaminants of environmental concern. The high susceptibility of chlorinated ethanes like 1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different competing pathways (biotic and abiotic) complicates the assessment of their fate in the subsurface. In this study, the use of a dual C-Cl isotope approach to identify the active degradation pathways of 1,1,1- TCA is evaluated for the first time in an aerobic aquifer impacted by 1,1,1-TCA and trichloroethylene (TCE) with concentrations of up to 20 mg/L and 3.4 mg/L, respectively. The reaction-specific dual carbon-chlorine (C-Cl) isotope trends determined in a recent laboratory study illustrated the potential of a dual isotope approach to identify contaminant degradation pathways of 1,1,1-TCA. Compared to the dual isotope slopes (&#916;&#948;13C/&#916;&#948;37CI) previously determined in the laboratory for dehydrohalogenation/hydrolysis (DH/HY, 0.33 &#177; 0.04) and oxidation by persulfate (&#8734;), the slope determined from field samples (0.6 &#177; 0.2, r2 &#61; 0.75) is closer to the one observed for DH/HY, pointing to DH/HY as the predominant degradation pathway of 1,1,1-TCA in the aquifer. The observed deviation could be explained by a minor contribution of additional degradation processes. This result, along with the little degradation of TCE determined from isotope measurements, confirmed that 1,1,1-TCA is the main source of the 1,1-dichlorethylene (1,1-DCE) detected in the aquifer with concentrations of up to 10 mg/L. This study demonstrates that a dual C-Cl isotope approach can strongly improve the qualitative and quantitative assessment of 1,1,1-TCA degradation processes in the field

    Assessing the effects of spatial discretization on large-scale flow model performance and prediction uncertainty

    Full text link
    Large-scale physically-based and spatially-distributed models (>100 km2) constitute useful tools for water management since they take explicitly into account the heterogeneity and the physical processes occurring in the subsurface for predicting the evolution of discharge and hydraulic heads for several predictive scenarios. However, such models are characterized by lengthy execution times. Therefore, modelers often coarsen spatial discretization of large-scale physically-based and spatially-distributed models for reducing the number of unknowns and the execution times. This study investigates the influence of such a coarsening of model grid on model performance and prediction uncertainty. The improvement of model performance obtained with an automatic calibration process is also investigated. The results obtained show that coarsening spatial discretization mainly influences the simulation of discharge due to a poor representation of surface water network and a smoothing of surface slopes that prevents from simulating properly surface water-groundwater interactions and runoff processes. Parameter sensitivities are not significantly influenced by grid coarsening and calibration can compensate, to some extent, for model errors induced by grid coarsening. The results also show that coarsening spatial discretization mainly influences the uncertainty on discharge predictions. However, model prediction uncertainties on discharge only increase significantly for very coarse spatial discretizations.Peer reviewe

    Effects of agricultural land use on fluvial carbon dioxide, methane and nitrous oxide concentrations in a large European river, the Meuse (Belgium)

    Full text link
    peer reviewedWe report a data-set of CO2, CH4, and N2O concentrations in the surface waters of the Meuse river network in Belgium, obtained during four surveys covering 50 stations (summer 2013 and late winter 2013, 2014 and 2015), from yearly cycles in four rivers of variable size and catchment land cover, and from 111 groundwater samples. Surface waters of the Meuse river network were over-saturated in CO2, CH4, N2O with respect to atmospheric equilibrium, acting as sources of these greenhouse gases to the atmosphere, although the dissolved gases also showed marked seasonal and spatial variations. Seasonal variations were related to changes in freshwater discharge following the hydrological cycle, with highest concentrations of CO2, CH4, N2O during low water owing to a longer water residence time and lower currents (i.e. lower gas transfer velocities), both contributing to the accumulation of gases in the water column, combined with higher temperatures favourable to microbial processes. Inter-annual differences of discharge also led to differences in CH4 and N2O that were higher in years with prolonged low water periods. Spatial variations were mostly due to differences in land cover over the catchments, with systems dominated by agriculture (croplands and pastures) having higher CO2, CH4, N2O levels than forested systems. This seemed to be related to higher levels of dissolved and particulate organic matter, as well as dissolved inorganic nitrogen in agriculture dominated systems compared to forested ones. Groundwater had very low CH4 concentrations in the shallow and unconfined aquifers (mostly fractured limestones) of the Meuse basin, hence, should not contribute significantly to the high CH4 levels in surface riverine waters. Owing to high dissolved concentrations, groundwater could potentially transfer important quantities of CO2 and N2O to surface waters of the Meuse basin, although this hypothesis remains to be tested

    Application of the Hybrid Finite Element Mixing Cell method to an abandoned coalfield in Belgium

    Full text link
    The Hybrid Finite Element Mixing Cell (HFEMC) method is a flexible modelling technique particularly suited to mining problems. The principle of this method is to subdivide the modelled zone into several subdomains and to select a specific equation, ranging from the simple linear reservoir equation to the groundwater flow in porous media equation, to model groundwater flow in each subdomain. The model can be run in transient conditions, which makes it a useful tool for managing mine closure post-issues such as groundwater rebound and water inrushes. The application of the HFEMC method to an abandoned underground coal mine near the city of Liege (Belgium) is presented. The case study zone has been discretized taking advantage of the flexibility of the method. Then, the model has been calibrated in transient conditions based on both hydraulic head and water discharge rate observation and an uncertainty analysis has been performed. Finally, the calibrated model has been used to run several scenarios in order to assess the impacts of possible future phenomena on the hydraulic heads and the water discharge rates. Among others, the simulation of an intense rainfall event shows a quick and strong increase in hydraulic heads in some zones coupled with an increase in associated water discharge rates. This could lead to stability problems in local hill slopes. These predictions will help managing and predicting mine water problems in this complex mining system

    Continuous dissolved gas tracing of fracture‐matrix exchanges

    No full text
    International audienceTransport in fractured media plays an important role in a range of processes, from rock weathering and microbial processes to contaminant transport, and energy extraction and storage. Diffusive transfer between the fracture fluid and the rock matrix is often a key element in these applications. But the multiscale heterogeneity of fractures renders the field assessment of these processes extremely challenging. This study explores the use of dissolved gases as tracers of fracture‐matrix interactions, which can be measured continuously and highly accurately using mobile mass spectrometers. Since their diffusion coefficients vary significantly, multiple gases are used to probe different scales of fracture‐matrix exchanges. Tracer tests with helium, xenon and argon were performed in a fractured chalk aquifer and resulting tracer breakthrough curves are modelled. Results show that continuous dissolved gas tracing with multiple tracers provide key constrains on fracture matrix interactions and reveal unexpected scale effects in fracture‐matrix exchange rates

    A framework for an optimised groundwater monitoring network and aggregated indicators

    Full text link
    The implementation of the Water Framework Directive (EU 2000) requires a groundwater quality monitoring. It is used for characterisation of the 'good' chemical status of each groundwater body and for the restoration or protection purposes of those bodies already at 'good' status. Interpretative aspects are lying in the design of monitoring network and in the way of building global indicators. Attention is given here to the global chemical status of the groundwater bodies and to the role of diffuse pollution, much of which is brought via groundwater to surface water. Monitoring 'local' pollution associated with individual sites is not addressed. Groundwater bodies with different contrasted hydrogeology conditions, land use and topography have been considered to establish an approach for choosing an optimised monitoring network. Then, a quality assessment system has been developed and applied for qualifying the general status of each groundwater body. The use of non-dimensional indexes allows us to process with all kinds of chemical parameters in a normalised way and, by means of adequate aggregation rules, to qualify the general quality status of a groundwater body. The obtained diagnostic, even if not fully validated, is closely linked to the pragmatic objectives contained in the EU Water Directive
    corecore