3,703 research outputs found

    Different tumours induced by benzo(a)pyrene and its 7,8-dihydrodiol injected into adult mouse salivary gland.

    Get PDF
    A comparison has been made between the carcinogenic activities of benzo(a)pyrene and the proposed proximate carcinogen, benzo(a)pyrene 7,8-dihydrodiol, in the adult C57BL mouse submandibular salivary gland. In preliminary studies using a range of doses, the dihydrodiol was slightly less active than the parent hydrocarbon in this system. There was a difference in the type of tumour induced by the 2 compounds. Benzo(a)pyrene induced tumours of the salivary glands at the site of injection, whereas the dihydrodiol induced malignant lymphosarcomas, particularly of the thymus, which were often metastatic to other orgnas. Possible reasons for the different sites of action of the 2 compounds are discussed

    Emerging importance of molecular pathogenesis of vascular malformations in clinical practice and classifications

    Get PDF
    Introduction: Vascular malformations occur during early vascular development resulting in abnormally formed vessels that can manifest as arterial, venous, capillary or lymphatic lesions or in combination, and include local tissue overdevelopment. Vascular malformations are largely caused by sporadic somatic gene mutations. This article aims to review and discuss current molecular signaling pathways and therapeutic targets for vascular malformations and to classify vascular malformations according to the molecular pathways involved. / Methods: A literature review was performed using Embase and Medline. Different MeSH terms were combined for the search strategy, with the aim of encompassing all studies describing the classification, pathogenesis and treatment of vascular malformations. / Results: Major pathways involved in the pathogenesis of vascular malformations are VEGF, Ras/Raf/MEK/ERK, Angiopoietin-TIE2, TGF- β and PI3K/AKT/mTOR. These pathways are involved in controlling cellular growth, apoptosis, differentiation and proliferation, and play a central role in endothelial cell signaling and angiogenesis. Many vascular malformations share similar aberrant molecular signaling pathways with cancers and inflammatory disorders. Therefore, selective anti-cancer agents and immunosuppressants may be beneficial in treating vascular malformations of specific mutations. The current classification systems of vascular malformations including the ISSVA classification are primarily observational and clinical, and are not based on the molecular pathways involved in the pathogenesis of the condition. / Conclusions: Several molecular pathways with potential therapeutic targets have been demonstrated to contribute to the development of various vascular anomalies. Classifying vascular malformations based on their molecular pathogenesis may improve treatment by determining the underlying nature of the condition and their potential therapeutic target

    Hole-depletion of ladders in Sr14_{14}Cu24_{24}O41_{41} induced by correlation effects

    Full text link
    The hole distribution in Sr14_{14}Cu24_{24}O41_{41} is studied by low temperature polarization dependent O K Near-Edge X-ray Absorption Fine Structure measurements and state of the art electronic structure calculations that include core-hole and correlation effects in a mean-field approach. Contrary to all previous analysis, based on semi-empirical models, we show that correlations and antiferromagnetic ordering favor the strong chain hole-attraction. For the remaining small number of holes accommodated on ladders, leg-sites are preferred to rung-sites. The small hole affinity of rung-sites explains naturally the 1D - 2D cross-over in the phase diagram of (La,Y,Sr,Ca)14_{14}Cu24_{24}O41_{41}Comment: 6 pages, 8 figure

    Heights of one- and two-sided congruence lattices of semigroups

    Full text link
    The height of a poset PP is the supremum of the cardinalities of chains in PP. The exact formula for the height of the subgroup lattice of the symmetric group Sn\mathcal{S}_n is known, as is an accurate asymptotic formula for the height of the subsemigroup lattice of the full transformation monoid Tn\mathcal{T}_n. Motivated by the related question of determining the heights of the lattices of left- and right congruences of Tn\mathcal{T}_n, we develop a general method for computing the heights of lattices of both one- and two-sided congruences for semigroups. We apply this theory to obtain exact height formulae for several monoids of transformations, matrices and partitions, including: the full transformation monoid Tn\mathcal{T}_n, the partial transformation monoid PTn\mathcal{PT}_n, the symmetric inverse monoid In\mathcal{I}_n, the monoid of order-preserving transformations On\mathcal{O}_n, the full matrix monoid M(n,q)\mathcal{M}(n,q), the partition monoid Pn\mathcal{P}_n, the Brauer monoid Bn\mathcal{B}_n and the Temperley-Lieb monoid TLn\mathcal{TL}_n

    Sperm morphology, adenosine triphosphate (ATP) concentration and swimming velocity: unexpected relationships in a passerine bird.

    Get PDF
    The relationship between sperm energetics and sperm function is poorly known, but is central to our understanding of the evolution of sperm traits. The aim of this study was to examine how sperm morphology and ATP content affect sperm swimming velocity in the zebra finch Taeniopygia guttata We exploited the high inter-male variation in this species and created extra experimental power by increasing the number of individuals with very long or short sperm through artificial selection. We found a pronounced quadratic relationship between total sperm length and swimming velocity, with velocity increasing with length up to a point, but declining in the very longest sperm. We also found an unexpected negative association between midpiece length and ATP content: sperm with a short midpiece generally contained the highest concentration of ATP. Low intracellular ATP is therefore unlikely to explain reduced swimming velocity among the very longest sperm (which tend to have a shorter midpiece)

    Glaucoma drainage device surgery outcomes for pediatric uveitic glaucoma

    Get PDF

    Exchange bias in GeMn nanocolumns: the role of surface oxidation

    Full text link
    We report on the exchange biasing of self-assembled ferromagnetic GeMn nanocolumns by GeMn-oxide caps. The x-ray absorption spectroscopy analysis of this surface oxide shows a multiplet fine structure that is typical of the Mn2+ valence state in MnO. A magnetization hysteresis shift |HE|~100 Oe and a coercivity enhancement of about 70 Oe have been obtained upon cooling (300-5 K) in a magnetic field as low as 0.25 T. This exchange bias is attributed to the interface coupling between the ferromagnetic nanocolumns and the antiferromagnetic MnO-like caps. The effect enhancement is achieved by depositing a MnO layer on the GeMn nanocolumns.Comment: 7 pages, 5 figure

    The spin state transition in LaCoO3_{3}; revising a revision

    Get PDF
    Using soft x-ray absorption spectroscopy and magnetic circular dichroism at the Co-L2,3L_{2,3} edge we reveal that the spin state transition in LaCoO3_{3} can be well described by a low-spin ground state and a triply-degenerate high-spin first excited state. From the temperature dependence of the spectral lineshapes we find that LaCoO3_{3} at finite temperatures is an inhomogeneous mixed-spin-state system. Crucial is that the magnetic circular dichroism signal in the paramagnetic state carries a large orbital momentum. This directly shows that the currently accepted low-/intermediate-spin picture is at variance. Parameters derived from these spectroscopies fully explain existing magnetic susceptibility, electron spin resonance and inelastic neutron data

    Ising magnetism and ferroelectricity in Ca3_3CoMnO6_6

    Full text link
    The origin of both the Ising chain magnetism and ferroelectricity in Ca3_3CoMnO6_6 is studied by abab initioinitio electronic structure calculations and x-ray absorption spectroscopy. We find that Ca3_3CoMnO6_6 has the alternate trigonal prismatic Co2+^{2+} and octahedral Mn4+^{4+} sites in the spin chain. Both the Co2+^{2+} and Mn4+^{4+} are in the high spin state. In addition, the Co2+^{2+} has a huge orbital moment of 1.7 μB\mu_B which is responsible for the significant Ising magnetism. The centrosymmetric crystal structure known so far is calculated to be unstable with respect to exchange striction in the experimentally observed ↑↑↓↓\uparrow\uparrow\downarrow\downarrow antiferromagnetic structure for the Ising chain. The calculated inequivalence of the Co-Mn distances accounts for the ferroelectricity.Comment: 4 pages, 3 figures, PRL in press (changes made upon referees comments
    • …
    corecore