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Introduction

Vascular malformations have a worldwide prevalence of 
0.3–1.5%.1 Vascular malformations occur during early vas-
cular development, resulting in abnormally formed vessels 
that can manifest as arterial, venous, capillary or lymphatic 
lesions, or in combination, and include local tissue overde-
velopment. These lesions are largely caused by sporadic 
somatic gene mutations2 that regulate vital pathways such 
as angiogenesis, apoptosis, maturation, proliferation, and 
growth of vascular cells.3 Vascular malformations are pre-
sumed to be present at birth but remain subclinical until 
presentation. They tend to be static or slow in growth in 
proportion to the child, and do not involute spontaneously. 
However, certain physiological and pathological circum-
stances, such as hormonal change (e.g. puberty or preg-
nancy) and trauma, respectively, are recognized to 
accelerate their growth and proliferation. Patients may 
complain of the disfiguring appearance and/or functional 

impairment caused by the vascular malformation that could 
lead to psychological distress. Complications can be local-
ized to the lesion, such as pain, bleeding and infection, and 
be systemic, such as pulmonary embolism, limb loss and 
life-threatening end-organ failure including high-output 
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cardiac failure.4 The patients have also been shown to have 
poorer quality of life than the general population.5

In 2014 and 2018, the International Society of the Study of 
Vascular Anomalies (ISSVA) updated the existing classifica-
tion with new information on the genetics and histology of 
vascular anomalies, dividing the tumor group into benign, 
locally aggressive or borderline, and malignant. Vascular 
malformations were divided into four groups: simple, com-
bined, those of major named vessels (lymphatics, veins, arter-
ies), and those associated with other anomalies (Table 1).6 

The current classification systems, especially the ISSVA 
classification, have been widely used by both clinicians and 
scientists. However, despite the ISSVA classification listing 
associated causal genes, the classification system is primarily 
observational and clinical, and not based on the molecular 
pathways involved in the pathogenesis of the condition. This 
article aims to review and discuss current understanding of 
the molecular signaling pathways and potential therapeutic 
targets for vascular malformations and to classify vascular 
malformations according to the molecular pathways involved.

Methods

A literature search was performed on Embase (1980–2019) 
and Medline (1980–2019). The MeSH terms used in 
Embase were ‘congenital blood vessel malformation’, 
‘classification’, ‘genetics’, and ‘drug therapy’. The MeSH 
terms used in Medline were ‘vascular malformations’, 
‘classification’, ‘genetics’, and ‘drug therapy’. Only full 
articles in English that reported on vascular malformations 
were included. Unpublished material, abstracts, and letters 
were all excluded.

Results

Mechanisms of pathogenesis

Vascular morphogenesis is divided into vasculogenesis and 
angiogenesis (Figure 1). Vasculogenesis begins in the extra-
embryonic mesoderm of the yolk sac7 and involves three 
main phases. The first phase is initiated from the generation 
of hemangioblasts; the second phase involves the prolifera-
tion and differentiation of angioblasts into endothelial cells; 
and the third phase is the formation of primary capillary 
plexus from endothelial cells.8,9

Angiogenesis is the growth of blood vessels from existing 
vasculature. The endothelial cells at the venous end of the 
capillary are stimulated by growth factors to undergo five dis-
tinct processes: basement membrane digestion, migration, 
mitosis, basement membrane formation, and lumen forma-
tion. Angiogenesis is regulated under a fine balance of stimu-
lation and inhibition. Under certain physiological (e.g. wound 
healing and menstruation), as well as pathological conditions 
including hypoxia and injury, growth factors are released in 
excess, thereby activating angiogenesis.10,11 Angiogenesis 
will continue until the pro-angiogenic stimulus is dampened 
or removed, and eventually the angiogenic inhibitors will be 
in excess, causing it to cease. The duration and intensity dur-
ing which angiogenesis is ‘turned on’ determines whether the 
process is physiological or pathological.12

The lymphatic system develops through a process 
known as lymphangiogenesis and primarily controls tis-
sue fluid homeostasis, and serves as a trafficking route 
for immune cells. Hence, defects within the system will 
result in lymphedema formation and the compromise of 
the immune function. The lymphatic vessels develop 
from the endothelial cells that bud from the venous sys-
tem and are mainly regulated by the VEGF-C/VEGF-D/
VEGFR-3 signaling system.13

Table 1.  Overview of classification of vascular anomalies according to 2018 ISSVA guidelines6.

Vascular tumors Vascular malformations

  Simple Combined Those of major named vessels Those associated with 
other anomalies

Benign
Locally aggressive 
or borderline
Malignant

Capillary
Lymphatic
Venous
Arteriovenous
Arteriovenous fistula

Combination of simple 
vascular malformations 
(e.g. CLM)

Vascular malformations that  
affect veins, capillaries,  
arteries, or lymphatics of 
larger, axial, conducting  
channels

For example, KTS, 
Proteus syndrome

Adapted from Ref 6 with permission from ISSVA as per the Creative Commons Attribution 4.0 Interatnional License (https://creativecommons.org/
licenses/by/4.0/). 
CLM, capillary lymphatic malformation; ISSVA, International Society of the Study of Vascular Anomalies; KTS, Klippel–Trenaunay syndrome.

Figure 1.  Mechanisms of the formation of new blood vessels: 
vasculogenesis begins after the initiation of gastrulation in the 
mammalian embryo whereby capillaries are formed from 
vascular progenitor cells; angiogenesis is the formation of new 
blood vessels from existing blood vessels.
EC, endothelial cell; EPC, endothelial progenitor cell; P, pericytes.
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Vascular morphogenesis is a well-regulated process 
through the interactions and effects of pro-angiogenic and 
antiangiogenic factors. The disruption in any components 
of the vasculogenesis and angiogenesis remodeling path-
ways could provide clues to the potential genes that have 
been mutated in inherited vascular malformation syn-
dromes. The best characterized inherited vascular malfor-
mation syndromes include: type I and II hereditary 
lymphedema, hypotrichosis-lymphedema-telangiectasia, 
cutaneomucosal venous malformation, glomuvenous mal-
formation (GVM), cerebral autosomal dominant arteriopa-
thy with subcortical infarcts and leukoencephalopathy 
(CADASIL), cerebral cavernous malformation, and heredi-
tary hemorrhagic telangiectasia (HHT).

Molecular pathogenesis

The key signaling pathways involved in the pathogenesis of 
vascular malformations are summarized in Figure 2 and 
Table 2. Five key pathways have been identified to play a 

role in the pathogenesis of vascular malformations and are 
described as follows.

Vascular endothelial growth factor (VEGF).  The VEGF signal-
ing pathway plays a pivotal role in vasculogenesis, angio-
genesis, and lymphangiogenesis. The VEGF family 
includes VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-
E, and placental growth factor-1 and -2.14,15 Signaling is 
mediated by the binding to three membrane-bound tyrosine 
kinase receptors: VEGFR-1, VEGFR-2, and VEGFR-3. 
Both VEGFR-1 and VEGFR-2 are confined to endothelial 
cells during embryonic development.16,17 VEGFR-2 is 
exclusively localized on endothelial cells, hence playing an 
important role in endothelial cell differentiation and vascu-
logenesis.18,19 VEGFR-3 primarily regulates the develop-
ment and regulation of the lymphatic system.20 VEGF is the 
most potent direct-acting angiogenic protein,21,22 which 
mediates its response by increasing vascular permeability, 
and inducing endothelial cell proliferation, migration, sur-
vival, and secretion of matrix metalloproteinases.23

Figure 2.  Diagram illustrating the mutations and signaling pathways involved in vascular anomalies.
ALK1, activin receptor-like kinase; AVM, arteriovenous malformations; BMP, bone morphogenetic protein; BRBN, blue rubber bleb nevus syndrome; 
CCM, cerebral cavernous malformation; CM, capillary malformation; cMET, MET proto-oncogene, receptor tyrosine kinase; EphB4, ephrin type-B 
receptor 4; ERK, extracellular signal regulated kinase; FKBP, FK506-binding protein 5(peptidyl-prolyl-cis-trans isomerase); GNAQ, guanine nucleo-
tide-binding protein G(q) subunit alpha; GVM, glomuvenous malformations; HCCVM, hyperkeratotic cutaneous capillary venous malformation; HGF, 
hepatocyte growth factor; HHT, hereditary hemorrhagic telangiectasia; JPHT, juvenile polyposis/HHT syndrome; KRIT, Krev interaction trapped; 
LM, lymphatic malformation; MEK, mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; MVM, multifocal venous malformation; 
NICH, non-involuting congenital hemangioma; PG, pyogenic granuloma; PI3K, phosphoinositide 3-kinase; PIK3, phosphatidylinositol-4,5-biphsophate 
3-kinase catalytic subunit alpha; PTEN, phosphatase and tensin homolog; RASA1, RAS p21 protein activator 1; RICH, rapidly involuting congenital 
hemangioma; RTK, receptor tyrosine kinase; SMAD, homologues of the Drosphilia protein, mothers against decapentaplegic (MAD) and the Cae-
norhabditis elegans protein Sma; TIE2, TEK receptor kinase; TGF, transforming growth factor; VEGF, vascular endothelial growth factor; VM, venous 
malformation; VMCM, cutaneomucosal venous malformations; vSMC, vascular smooth muscle cells; VVM, verrucous venous malformations.
Reprinted from Otolaryngologic Clinics of North America, 51, Queisser A, Boon LM, Vikkula M, Etiology and genetics of congenital vascular lesions, 
pp.41–52, Copyright 2018, with permission from Elsevier.
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Table 2.  An overview of vascular malformations with associated genetic cause.

Malformation Mutated 
gene

Locus Mutation type Clinical features

Capillary malformation 
(including Sturge–
Weber syndrome)

GNAQ 9q21.2 Missense Presents as blanchable pink to red patches. Lesions are flat 
and painless.51

CM-AVM1 RASA1 5q14.3 Loss of function Atypical multifocal cutaneous capillary malformations with an 
AVM.51

CM-AVM2 EPHB4 7q22.1 Loss of function Similar clinical features to CM-AVM1 but with additional oc-
currence of telangiectasias.51

HHT1 Eng 9q34.11 Loss of function Recurrent epistaxis; telangiectasia of the lips, oral cavity, fingers, 
nasal mucosa, and gastrointestinal tract; internal organ AVMs, 
particularly in the brain, lungs, liver, and gastrointestinal tract.79

HHT2 ALK1 12q13.13 Loss of function Similar clinical features to HHT1. Cerebral and pulmonary 
AVM occur more often in HHT1, whereas hepatic AVM are 
more frequent in HHT2.80

Juvenile polyposis 
HHT (JP-HHT)

SMAD4 18q21.2 Loss of function Juvenile polyposis is characterized by numerous hamartoma-
tous polyps either in the colon or throughout the gastrointes-
tinal tract. Patients have increased risk of colon carcinomas. 
Patients with JP-HHT will show features of both juvenile 
polyposis and HHT.78

CCM1 KRIT1 7q21.2 Loss of function May experience seizures, focal neurological deficits, nonspe-
cific headaches, and cerebral hemorrhage.
Inherited CCMs typically have multiple lesions.58

CCM2 Malcav-
ernin

7p13 Loss of function Rate of lesion development is slower compared to CCM1.58

CCM3 PDCD10 3q26.1 Loss of function More likely to be symptomatic and present with hemorrhage 
before 15 years old. Affected individuals typically have the 
most severe clinical phenotype (e.g. higher risk of scoliosis and 
cognitive disability).58

Sporadic venous 
malformation

TEK
PIK3CA

9p21.2
3q26.32

Somatic
Somatic

Lesions are typically bluish/purple in color that are soft and 
compressible. Pain is common if lesion involves joint, tendon 
or muscle.63

Inherited cutane-
omucosal venous 
malformation

TEK 9p21.2 Somatic Multiple small, superficial, and bluish lesions that are com-
pressible.63

Glomuvenous malfor-
mation

Glomulin 1p22.1 Loss of function Multifocal lesions that are cobblestone or plaque-like. Lesions 
are dark blue to purple in color, slightly hyperkeratotic, painful 
on palpation, and emptied by compression.73

Lymphatic malforma-
tions

PIK3CA 3q26.32 Somatic Macrocystic lymphatic malformations are a large, translucent 
soft mass that typically occur in the cervicofacial, axilla or 
groin region.100

Microcystic lymphatic malformations appear as a cluster of 
small, firm blisters that usually occur on the proximal extremi-
ties, axilla, trunk, and oral cavity.100

Symptoms usually develop if the lymphatic malformation com-
presses nearby organs (e.g. malformations affecting the mouth 
or neck can cause dyspnea and dysphagia).100

Primary congenital 
lymphedema (Milroy 
disease)

VEGFR3 5q35.3 Missense Lymphedema in both lower extremities soon after birth. 
Complications may include up-slanting toenails, papillomatosis 
and abnormally large or prominent leg veins.27

Lymphedema precox 
(Meige disease)

FOXC2 16q24.1 Gain of func-
tion (mutations 
outside forkhead 
domain)
Loss of function 
(mutations in 
forkhead domain)

Most common type of primary lymphedema. Typically pre-
sents at the onset of puberty with unilateral edema –particu-
larly to the foot and calf.30

(Continued)

ALK1, activin receptor-like kinase 1; AVM, arteriovenous malformation; CCM, cerebral cavernous malformations; CM-AVM, capillary malformation-
arteriovenous malformation; Eng, endoglin; EPHB4, ephrin type-B receptor 4; FOXC2, forkhead box protein C2; GNAQ, guanine nucleotide-binding 
protein G(q) subunit alpha; HHT, hereditary hemorrhagic telangiectasia; KRIT1, Krev interaction trapped 1; PDCD10, programmed cell death 
protein 10; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; RASA1, RAS p21 protein activator 1; SMAD4, homologs 
of the Drosophila protein, mothers against decapentaplegic (MAD) and the Caenorhabditis elegans protein Sma 4; TEK, tyrosine kinase, endothelial; 
VEGFR, vascular endothelial growth factor receptor.
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Primary congenital lymphedema (Milroy disease) is 
caused by missense mutations in VEGFR-3,24,25 inhibiting the 
phosphorylation of the receptor and downstream signaling.26 
Milroy disease causes lower limb lymphedema that is present 
at birth or develops in infancy. Swelling is typically bilateral 
and can be associated with hydrocele and/or urethral abnor-
malities (males), prominent veins, up-slanting nails, hyper-
keratosis, papillomatosis and/or cellulitis.27 Management is 
aimed at reducing swelling and preventing complications, 
which typically involves conservative approaches that include 
the use of compression therapy and manual lymphatic drain-
age, while recurrent cases of infection may benefit from pro-
phylactic antibiotics.28

Primary lymphedema praecox (Meige disease) is caused 
by gain of function mutations in transcription factor 
FOXC2.28,29 It typically presents with unilateral lower limb 
lymphedema that rarely extends above the knee, which 
commonly occurs after puberty and predominantly in 
females.30 Patients may develop cobblestone-like hyper-
keratosis and cellulitis.30 Its management follows the same 
approach as primary congenital lymphedema. FOXC2 is 
involved in lymphatic endothelial cell differentiation by 
regulating important endothelial target genes such as Ang-
2, integrin β3, DLL4, and HEY2.31–33 In the lymphatic ves-
sels, VEGF-C binds to its receptor VEGFR-3 and stabilizes 
FOXC2. In FOXC2-deficient lymphatic vessels, there has 
been demonstration of failed down-regulation of VEGFR-3 
and its signaling.34 Loss of FOXC2 leads to the overproduc-
tion of platelet derived growth factor subunit-B (PDGF-B) 
and increased recruitment of smooth muscle cells in the 
lymphatic walls.26

Hypotrichosis lymphedema telangiectasia is caused by 
missense mutations in transcription factor SOX18.35 It is 

characterized by the triad of sparse hair, lymphedema, and 
cutaneous telangiectasias. Sparse hair usually occurs dur-
ing infancy with eyebrows and eyelashes missing and the 
lack of development of axillary or pubic hair. Lymphedema 
typically affects lower limbs, and telangiectasias are pre-
sent on palms, soles, scalp, scrotum or legs.35 Its manage-
ment is directed towards the specific presenting symptoms, 
and primarily aimed at reducing swelling and preventing 
infection. The SOX18 expression can be detected in 
endothelial cells. It regulates prospero homeobox 1 
(PROX1), which then controls the VEGFR-3 expression. 
PROX1 is an important regulator of lymphatic vessel dif-
ferentiation, hence an early marker of lymphangiogenesis.35 
In endothelial cells, PROX1 interacts with MEF2C to regu-
late the adhesion molecule VCAM1 (vascular cell adhesion 
molecule 1), which plays a critical role in vascular and lym-
phatic endothelium.26

Ras/Raf/MEK/ERK.  The Ras/Raf/MEK/ERK pathway plays 
a prominent role in endothelial cell function.36,37 Targeted 
deletion of genes in this pathway are associated with vascu-
lar defects during embryogenesis.38,39 This pathway pri-
marily functions by involving: (i) Ras recruiting and 
activating protein kinase Raf; (ii) Raf promoting MEK1/2 
protein kinase and activation of ERK1/2; and (iii) activated 
ERK1/2 regulating different transcription factors.40 Ras is a 
small GTP-binding protein that is an upstream molecule of 
several pathways such as MEK/ERK and PI3K/AKT.41 
Raf, a serine/threonine protein kinase, are the main effec-
tors of Ras and upstream activators of the ERK pathway.42 
MEK1 and MEK2 are tyrosine and serine/threonine dual 
specificity protein kinases which catalyze the phosphoryla-
tion of ERK1/2.43 ERK1/2 are members of the MAPK 

Malformation Mutated 
gene

Locus Mutation type Clinical features

Hypotrichosis 
lymphedema telangi-
ectasia

SOX18 20q13.33 Missense Associated with sparse hair (hypotrichosis), lymphedema, and 
telangiectasia –particularly on the palms of the hands. Hair 
becomes sparse usually during infancy, with eyebrows and eye-
lashes missing and no development of axillary or pubic hair.35

PTEN hamartoma 
tumor syndrome

PTEN 10q23.31 Loss of function Clinical features are dependent on syndrome that the indi-
vidual is affected with. For example, Cowden syndrome is 
characteristic of multiple hamartomas with high risk of malig-
nant tumors of the breast, thyroid, and endometrium. Patients 
usually have macrocephaly, trichilemmomas, and papillomatous 
papules.91

Proteus syndrome AKT1 14q32.33 Somatic Rapidly progressive and asymmetrical overgrowth of any part 
of the body –particularly, connective tissue, fat, and bones in 
limbs, skull, and spine. Patients may develop skin lesions such 
as verrucous epidermal nevi or cerebriform connective tissue 
nevi.94

PROS PIK3CA 3q26.32 Somatic Dependent on the specific disorder present (e.g. in MCAP 
syndrome, affected individuals are associated with megalen-
cephaly or hemimegalencephaly, hypotonia, seizures, and 
intellectual disability).94

AKT1, AKT serine/threonine kinase 1; PROS, PIK3CA-related overgrowth spectrum; PTEN, phosphatase and tensin homolog; SOX18, SRY (sex 
determining region Y)-box 18.

Table 2. (Continued)
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family that mediate cell proliferation and apoptosis.44 The 
MEK5/ERK5 MAPK cascade has recently been implicated 
in embryonic vascular development and the maintenance of 
vascular integrity in mature blood vessels through knock-
out studies.45–47 In relation to the ERK1/2 MAPK, ERK5 
activation is triggered by dual phosphorylation at a TEY 
consensus motif by MEK.48 Missense mutations in GNAQ 
have been identified in capillary malformations. This pro-
tein encodes the guanine nucleotide binding protein G9q 
alpha subunit that hydrolyses GTP to GDP. This activates 
GTP-dependent signaling leading to the activation of the 
mitogen-activated protein kinase (MAPK) signaling.49

Capillary malformations-arteriovenous malformations 
(CM-AVM) is an autosomal dominant condition caused by 
loss of function mutations in RASA1.26,50 The hallmark of 
this disorder is the disorganized distribution of multiple 
atypical cutaneous capillary malformations, with associ-
ated high-flow lesions.50 Capillary malformations are typi-
cally small, round-to-oval in shape, and pink-red in color. 
These malformations are characteristically surrounded by a 
blanched halo with an associated steal phenomenon and 
increased blood flow which can be detected on a Doppler 
ultrasound.51 Patients who are symptomatic or with sus-
pected CM-AVM should be investigated with a magnetic 
resonance imaging (MRI) for intracranial and spinal 
AVMs.52 RASA1 codes for RAS p21 protein activator 1 
(p120-Ras-GAP), which negatively regulates Ras/MAPK/
ERK signaling. Mutations in this gene cause the loss of 
function of GTPase activity of Ras, hence overstimulation 
resulting in aberrant cell growth, differentiation, prolifera-
tion, and endothelial cell network organization.53,54 A sub-
entity, CM-AVM2, is caused by the loss of function 
mutations in EphB4,55 which is a transmembrane receptor 
on the surface of venous endothelial cells.56 Ephrin-B2 is a 
protein found on arterial endothelial cells that binds to its 
receptor EphB4.57 EphB4 is involved in the inhibition of 
the Ras/Raf/MEK/ERK signaling through interactions with 
p120-Ras-GAP.58

Cerebral cavernous malformations (CCM) is caused by 
loss of function mutations in three genes: (i) Krev interaction 
trapped 1 (KRIT1 or CCM1); (ii) cerebral malcavernin or 
CCM2; and (iii) programmed cell death protein 10 (PDCD10 
or CCM3).58 CCMs are largely located within the central 
nervous system. Approximately 25% of individuals with 
CCMs never experience any related medical problems.54 
However, cerebral hemorrhage from CCMs may cause sei-
zures and neurological deficits such as muscle weakness, 
loss of sensation, and paralysis.58 Accessible lesions can be 
surgically removed or embolized. Medical treatment can be 
used to manage associated symptoms such as the use of anti-
epileptics to prevent seizures.59 CCM1 is involved in regulat-
ing endothelial cell-cell junctions through Delta-Notch 
signaling, leading to the activation of AKT and decreased 
ERK activity.60 CCM1 interacts with CCM2 and CCM3 to 
form a complex that regulates MAP3K3 and GTPase RAC1 
function.61 The loss of this CCM complex function activates 
MAP3K3 signaling and its target genes KLF2, KLF4, RHO, 
and ADAMTS.62 Moreover, depletion of CDC42 (cell divi-
sion cycle 42) in brain endothelial cells has been shown to 
elicit increased MEKK3-MEK5-ERK5 signaling and 

subsequent overexpression of KLF2 and KLF4. CDC42 and 
KLF4 are downstream from MEKK3, which is upstream 
from ERK5, hence are examples of emerging molecular tar-
gets for CCM and other vascular malformations related to 
this pathway.63,64

Angiopoietin-TIE2.  Sporadic and cutaneomucosal venous 
malformations are characterized by small (< 2 cm in diam-
eter), multifocal, soft, usually compressible, and bluish-
purple venous lesions involving the skin and mucous 
membranes (Figure 3). Larger lesions may infiltrate the 
underlying muscle and joints – causing pain and sometimes 
calcifications.65 Its management is often based upon the 
location and extent of the malformations, consisting of the 
use of compression garments, analgesia, and sclerotherapy 
as first-line intervention.66

Sporadic and cutaneomucosal venous malformations are 
caused by somatic mutations in TIE2, which is an endothe-
lial cell-specific tyrosine kinase receptor that binds angi-
opoietins and encodes for the TEK gene.67 TIE2 has three 
known ligands: angiopoietin 1 (Ang1), angiopoietin 2 
(Ang2), and angiopoietin 4 (Ang4). The angiopoietin and 
Tie families play an important role in the later stages of 
vascular development and in adult vasculature by control-
ling remodeling and stabilization of vessels. Ang1 is 
required for the maturation and stability of newly formed 
vessels but Ang2 acts as an antagonist of Ang1/TIE by 
interfering with the stabilizing effects of Ang1 by allowing 
blood vessels to respond to pro-angiogenic factors and 
undergo growth and remodeling.68,69 Ang1 activates TIE2, 
resulting in receptor phosphorylation, thereby stimulating 
many intracellular pathways – in particular the PI3K/AKT/
mTOR pathway, which will be discussed shortly.26

Transforming growth factor beta (TGF-β).  TGF-β is a multi-
functional cytokine that plays a key role during embryogen-
esis. TGF-β signaling is through two classes of cell surface 
serine/threonine kinase receptors, type I and II, which rec-
ognize TGF-β family ligands. Upon ligand binding, the type 
II receptor phosphorylates the type I receptor, thereby pro-
viding a binding site for intracellular effectors of the path-
ways, the SMADs.70 The receptor-regulated SMADs 
(R-SMADs) become phosphorylated by the type I receptor 
and form a heteromeric complex with one common-SMAD 

Figure 3.  Venous malformation (arrow) localized to the hand. 
These are typically bluish, soft, and compressible lesions.
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(co-SMAD), SMAD4. TGF-β is generally split into two 
pathways, with TGF-β/activin leading to phosphorylation of 
SMAD2 and SMAD3, and bone morphogenetic protein 
(BMP) leading to phosphorylation of SMAD1, SMAD5, 
and SMAD9.71 TGF-β regulates endothelial cells by activat-
ing activin receptor-like kinase (ALK) 1 and ALK5.72 TGF-
β/ALK1 signaling induces SMAD1/5 activation, which 
stimulates endothelial cell migration, proliferation, and tube 
formation.73 Meanwhile, TGF-β/ALK5 signaling induces 
SMAD2/3 phosphorylation and blocks angiogenesis by 
inhibiting endothelial cell proliferation, tube formation, and 
migration.72,73

GVM is caused by the loss of function mutations in 
glomulin.26,74,75 GVMs are usually pink to purple-bluish 
lesions that are located on the extremities, affecting the skin 
and rarely the mucosa. They appear as nodular and multifo-
cal raised with a cobblestone-like appearance, except for the 
rare plaque-like lesions.75 Lesions are not compressible, but 
painful on palpation.71 Surgical excision is the treatment of 
choice in isolated lesions while sclerotherapy is effective in 
multiple lesions.76,77 Glomulin is involved in vascular 
smooth muscle cell differentiation76 through TGF-β signal-
ing. The binding of FK506 binding protein 12 (FKBP12) to 
the TGF-β type I receptor causes inhibition of the TGF-β 
signaling.26 Glomulin interacts with FKBP12 by forming a 
complex, which has been shown to be inhibited by rapamy-
cin. This may suggest glomulin has a role in the mammalian 
target of the rapamycin (mTOR) signaling pathway.78 
Mutations in this gene will therefore enable FKBP12 to bind 
to its receptor, hence inhibit TGF-β signaling.26 Different 
SMAD signaling cascades are then recruited and activated 
depending on which type I receptor is activated. SMADs 
comprise a family of structurally similar proteins that are the 
main signal transducers for receptors of the TGF-β. In 
endothelial cells, TGF-β signals through ALK1.

In HHT, loss of function mutations in three genes has 
been identified. HHT1 is caused by the loss of function 
mutations in endoglin (ENG).79 HHT2 is caused by muta-
tions in the ALK1 gene.80 Juvenile polyposis HHT is caused 
by the loss of function mutations in MADH4, which encodes 
the downstream effector SMAD4.80 HHT is manifested by 
spontaneous and recurrent epistaxis, mucocutaneous telan-
giectasias, and visceral AVMs.81 These visceral AVMs are 
usually asymptomatic but may lead to serious hemorrhagic 
complications. Pulmonary AVMs may present with dysp-
nea on exertion and hypoxemia. Paradoxical emboli can 
lead to serious complications such as brain abscesses, 
strokes, transient ischemic attacks, and hemorrhagic rup-
ture. Cerebral AVMs may bleed causing hemorrhagic 
stroke. Hepatic AVMs may manifest as high-output cardiac 
failure, portal hypertension or pulmonary hypertension. 
Again, its management is primarily aimed at preventing 
and treating the complications such as hemorrhage and ane-
mia, and screening for new or worsening AVMs.82 Signaling 
through ALK1 induces and inhibits endothelial cell migra-
tion and proliferation,83,84 which is modulated by ENG.85 
Recently, BMP9 and BMP10 have been shown to be asso-
ciated with the pathogenesis of HHT. Binding of BMP9 and 
BMP10 to ALK1 or ENG inhibit endothelial cell prolifera-
tion and migration.86 ENG increases BMP9/BMP10/Alk1 

signaling, resulting in the activation of receptor-regulated 
SMAD1/5/8 and co-SMAD, SMAD4. This suppresses 
endothelial cell migration and proliferation, thereby main-
taining a quiescent endothelium.87

PI3K/AKT/mTOR.  The PI3K/AKT/mTOR pathway plays an 
important role in cellular proliferation, adhesion, migra-
tion, invasion, metabolism, and survival.88 PI3K activation 
occurs via Ras mutation, loss of PTEN (phosphatase and 
tensin homolog) or by increased expression of growth fac-
tors. The activation is through the PI3K family, which leads 
to the phosphorylation of phosphatidylinositol-4,5-biphos-
phate (PIP2) to phosphatidylinositol-3,4,5-triphosphate 
(PIP3). PIP3 is a potent signaling molecule that recruits and 
regulates numerous downstream effectors, particularly the 
AKT, which controls protein synthesis and cell growth.89 
PTEN is a negative regulator of this pathway by opposing 
PI3K activity, thereby inhibiting AKT activation.90

PTEN hamartoma tumor syndrome is a spectrum of dis-
orders associated with the loss of function mutations in 
PTEN. PIP3 is converted to PIPs by PTEN. The mutations 
in this gene will result in constitutive activation of PI3K/
AKT/mTOR signaling.91,92 This disorder consists of 
Cowden syndrome, Bannayan–Riley syndrome, Proteus 
syndrome, and Proteus-like syndrome. The disease charac-
teristics are dependent on the specific disorder. Cowden dis-
ease is characterized by multiple benign growths, or 
hamartomas with an increased risk of both benign and 
malignant tumors. The most common phenotypic features 
include trichilemmomas, papillomatous papules, and acral 
and plantar keratoses. Patients are at increased risk of cer-
tain types of cancer, including breast, thyroid, and renal cell 
carcinoma.93 Bannayan–Riley syndrome is characterized by 
macrocephaly, hamartomatous intestinal polyps, pigmented 
macules of the penis, and neurodevelopmental disorders 
including intellectual disability and autism.94 Proteus syn-
drome is caused by somatic mutations in the AKT1 gene95 
resulting in abnormal growth and division. It is character-
ized by rapidly progressing overgrowth, typically asymmet-
ric in a mosaic distribution, of the bones, skin, and other 
tissues that usually manifest between 6 months and 2 years.96 
Meanwhile, there are individuals with Proteus-like syn-
drome who demonstrate many features associated with 
Proteus syndrome, but do not meet the diagnostic criteria.97 
Cancer surveillance is the key element of its management 
due to the increased risk of malignancy associated with this 
disease. Surveillance programs may include mammography 
and breast MRI, and thyroid ultrasound.64,92

PIK3CA-related overgrowth spectrum (PROS) is associ-
ated with somatic mutations in the PIK3CA gene95 resulting 
in abnormal activation of PI3K-AKT signaling, leading to an 
increase in cellular proliferation. PROS encompasses over-
growth syndromes that include: megalencephaly-capillary 
malformation syndrome; dysplastic megalencephaly; con-
genital lipomatous asymmetric overgrowth of the trunk; 
lymphatic, capillary, venous, and combined-type vascular 
malformation; congenital lipomatous overgrowth; vascular 
malformations; epidermal nevi, and spinal/skeletal anoma-
lies (CLOVES) syndrome; hemihyperplasia-multiple lipo-
matosis; and fibroadipose overgrowth, and Klippel–Trenaunay 
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syndrome (KTS) (Figure 4). Presentation is dependent on the 
clinical entities of the syndromes.96 For example, KTS is 
characterized by a triad of port-wine stain, abnormal growth 
of soft tissues and bones, and venous malformations (Figure 
5). The overgrowth of bones and soft tissues typically affects 
a single lower limb, causing pain and limb length discrep-
ancy. Venous malformations can involve the pelvic or 
abdominal organs, causing bleeding from the rectum, vagina 
or bladder. Extensive venous abnormalities can lead to hema-
tological consumptive complications such as localized intra-
vascular coagulopathy (LIC). Anticoagulation (e.g. with low 
molecular weight heparin) can be used to treat the pain asso-
ciated with LIC to prevent potential progression to dissemi-
nated intravascular coagulopathy (DIC).98,99 In half of the 
venous malformations that are not associated with TIE2 
mutations, PIK3CA mutations have been identified.50,97 This 
causes the disruption of the endothelial cell monolayer, loss 
of extracellular matrix fibronectin, and downregulation of 
ANGPT2 and PDGF-B expression.54,56 Several lymphatic 
malformations have also been shown to be caused by 
PIK3CA mutations.100,101

Emerging medical treatments that are 
based on molecular pathways of vascular 
malformation pathogenesis

Vascular malformations should be managed using a multi-
disciplinary approach. Lidsky and colleagues showed that 
implementation of diagnostic and therapeutic algorithms in 
a multidisciplinary setting resulted in favorable outcomes 
with an acceptable complication rate in patients with vascu-
lar malformations.102 The diagnosis of a vascular malfor-
mation is often clinical, and typically confirmed with 
radiological imaging. Low-flow and high-flow lesions can 
often be differentiated clinically, or with the help of a hand-
held Doppler and/or duplex ultrasonography. On duplex 
ultrasonography, the low-flow lesions typically demon-
strate heterogenous echotexture with a monophasic flow on 
Doppler. Macrocystic lymphatic malformations (Figure 6) 
show enlarged cystic spaces, whereas microcystic lym-
phatic malformations demonstrate a hyperechoic echotex-
ture but with no Doppler flow.103 In contrast, AVM will 
reveal a high flow and shunting within a region of high ves-
sel density.103 Cross-sectional imaging, including MRI or, 
rarely, computed tomography (CT), is then used to confirm 
and characterize the lesion, particularly anatomically, and 
is essential for treatment planning.104 For high-flow lesions, 
MRI ± 4D time-resolved magnetic resonance angiography 
may be indicated for accurate assessment of feeding and 
draining vessels, which helps in treatment planning.105 
Lesions with unusual clinical and imaging features should 
be evaluated with a tissue biopsy to exclude vascular 
tumors (e.g. sarcoma) (Figure 7).106

The current management options for vascular malforma-
tions are largely conservative and supportive with interven-
tions including embolo-sclerotherapy and surgery as 
necessitated by symptoms. General measures include phys-
iotherapy, graduated compression hosiery, support and edu-
cation, and psychological counselling. Endovascular 
therapy is the main interventional therapeutic tool in the 
management of vascular malformations and is considered a 
relatively safe and effective treatment.107 However, these 

Figure 4.  PIK3CA-related overgrowth spectrum involving the 
left upper limb demonstrating hand overgrowth with associated 
capillary malformations.

Figure 5.  Klippel–Trenaunay syndrome involving the left 
lower limb demonstrating a large port-wine stain and marked 
hypertrophy.

Figure 6.  Macrocystic lymphatic malformation on the side of 
the neck (cystic hygroma).
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interventions are invasive with associated risks of compli-
cations. Furthermore, current management of vascular mal-
formations is limited due to the restricted understanding of 
the molecular pathogenesis of vascular malformations and, 
consequently, the lack of specific target therapy. This is fur-
ther complicated by the heterogeneity of vascular malfor-
mations as well as the diverse and often traumatized patient 
groups. New and existing classification systems for vascu-
lar malformations incorporating the aberrant signaling 
pathways involved, such as in Table 3, may help to predict 
prognosis and improve the overall management of these 
patients (Figure 8).

Recent improvement in the understanding of the molecu-
lar pathogenesis of vascular malformations has led to the 
deployment of several targeted medical therapies for vascu-
lar malformations with specific aberrant signaling path-
ways. Sirolimus, an mTOR inhibitor, is used mainly as an 
immunosuppressive agent to prevent organ rejection. 
However, several trials have shown its efficacy in extensive 
and/or complex low-flow vascular malformations that were 
refractory to standard treatments.108–110 Thalidomide and 
bevacizumab (Avastin) are antiangiogenic agents that are 
used in various cancers where VEGF plays an important 

Clinically suspected vascular malformation

History and physical examination

Baseline blood tests (FBC, U&E, Clotting screen)

Ultrasound

High flow Low flow

AVM

MRA (measurement and mapping of feeding 
and draining structures and involvement of 
adjacent structures)

Genetic testing (establish subtype of 
vascular malformation and help to 
identify associated genetic syndrome)

Large septated 
spaces

Echogenic, 
no flow

Echogenic, flow

Macro-cystic LM Micro-cystic LM VM

MRI (confirmation, characterization and differentiation)

Confirmed diagnosis of vascular malformation

If imaging findings are non-specific, equivocal or compatible 
with a non-vascular malformation process

Tissue biopsy

Figure 7.  A diagnostic pathway for vascular malformations.
Ultrasound is typically the first imaging modality used. VM typically demonstrate low flow with a heterogenous echotexture. Macrocystic LMs are 
differentiated from VM by the presence of enlarged cystic spaces that may contain septations. Microcystic LMs may be confused with VMs but 
show no significant flow. AVMs will show high flow and shunting due to localized arterial and venous hypertrophy. Once a low-flow malformation is 
suspected, an MRI is performed for lesion confirmation, characterization, and treatment planning. AVMs will typically undergo a further scan (MRA), 
which confirms the lesion and allows accurate measurement and mapping of feeding and draining structures. If at any point there is no confirmation 
of vascular malformation, or in any atypical cases, then a tissue biopsy should be performed.
AVM, arteriovenous malformation; FBC, full blood count; LM, lymphatic malformation; MRA, magnetic resonance angiography; MRI, magnetic reso-
nance imaging; U&E, urea and electrolytes; VM, venous malformation.

Table 3.  Proposed new classification of vascular malformations 
based on signaling pathways.

Signaling pathway Malformation

VEGF Primary congenital lymphedema
TGF-β Glomuvenous
  HHT1, HHT2
Delta-Notch CCM1, CCM3
RAS/MEK/ERK Capillary malformation
  CM-AVM1, CM-AVM2
  CCM2
PI3K/AKT/mTOR Sporadic venous malformation
  Cutaneomucosal venous malformation
  Lymphatic malformation
  PTEN hamartoma tumor syndrome
  Proteus syndrome
  PROS

CCM, cerebral cavernous malformations; CM-AVM, capillary malformation-
arteriovenous malformation; HHT, hereditary hemorrhagic telangiectasia; 
PI3K/AKT/mTOR, phosphoinositide 3-kinase/AK transforming/mammalian 
target of rapamycin; PROS, PIK3CA-related overgrowth spectrum; PTEN, 
phosphatase and tensin homolog; RAS/MEK/ERK, rat sarcoma/mitogen-
activated protein kinase/extracellular signal-regulated kinase; TGF-β, trans-
forming growth factor beta; VEGF, vascular endothelial growth factor.
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role. Both these drugs have been used in the treatment of 
complications associated with HHT, such as severe epistaxis, 
gastrointestinal bleeding, and high-output cardiac failure 
secondary to hepatic arteriovenous malformations.111–115 
Early studies report the utility of thalidomide as a medical 
adjunct in the management of severe and refractory high-
flow AVM.116 Despite increasing reports of medical treat-
ments for the management of vascular anomalies, results of 
efficacy and safety are based largely on case reports/small 
case-series and clearly much further work with larger trials 
is needed. However, our review aims to highlight the poten-
tial of these molecular pathways as future therapeutic 
targets.

Classifying vascular malformations based on 
their molecular pathways

Molecular biology has enabled a better understanding of 
the pathogenesis of vascular anomalies. This has provided 
insights into molecular mechanisms underlying vascular 
morphogenesis, growth, and development. Vascular mal-
formations have been shown to be strongly linked to 
endothelial cell signaling pathways – particularly Ras/Raf/
MEK/ERK and PI3K/AKT/mTOR.117 These pathways 
have been shown to cause various cancers and hence the 
use of anticancer drugs may be beneficial for vascular mal-
formation treatment. An example is sirolimus, an mTOR 
inhibitor which has shown beneficial effects in the treat-
ment of lesions associated with the PI3K/AKT/mTOR 
pathway.108,109

The ISSVA classification provides a systematic 
approach to vascular lesions that corresponds with clini-
cal history, presentation, and disease manifestation.118 The 

limitation is that vascular anomalies acquired after 
infancy, such as von Hippel–Lindau syndrome, cannot be 
classified under a current ISSVA category.119 The classifi-
cation system is based on histopathological aspects of 
vascular anomalies; this presents difficulties in categoriz-
ing lesions with limited biopsy results such as rapidly 
involuting congenital hemangioma. Multiple separate dis-
ease entities as described in the ISSVA classification have 
been shown to share a common gene signaling pathway 
mutation (e.g. PROS and KTS) and appear to respond 
positively to sirolimus therapy, suggesting a common eti-
ological heritage. In classifying these disparate lesions by 
their common molecular signaling pathway mutations, 
simplification of classification of direct therapeutic rele-
vance becomes possible. The process of development of 
the classification, ultimately to include all vascular mal-
formations, can only become more robust as further active 
agents are discovered and assessed. With this in mind, and 
the rapid discovery of underlying genes involved, a 
molecular classification may be more appropriate, or at 
least complementary in the challenging management of 
vascular malformations.

A molecular classification enables a better understand-
ing of the pathophysiology of vascular anomalies. The 
identification of the signaling pathway involved can pro-
vide a targeted therapy approach and has potential to 
become a prognostic/predictive test. The limitations of a 
molecular classification are the ability to consistently 
assign a molecular class to new cases of vascular anomalies 
and also uncertainty of the number of molecular classes 
there may be. Further research will be required to generate 
human data through analysis of gene-expression profiles to 
gain insight into their function with potential new drugs. 

Confirmed diagnosis of vascular malformation
(according to proposed molecular classification)

TGF-β DSL RAS PI3KVEGF

VEGFR SMAD NOTCH RAF AKT

mTORMEK1/2

ERK1/2

Bevacizumab

Sunitinib
Sorafenib

Copanlisib
Idelalisib

Sorafenib
Vemurafenib

Trametinib
Sirolimus
Everolimus

MEK2/3

MEK5

ERK5

Ponatinib

Figure 8.  Potential therapeutic targets for vascular malformations based on current understanding and proposed molecular 
classification (see Table 3).
This only demonstrates the potential treatment options available. Currently, there are no approved TGF-β or Delta-Notch signaling pathway inhibi-
tors.
Inhibitors are highlighted in red and demonstrate where it inhibits along the pathways. Please note these inhibitors are not approved to be used in 
vascular malformations.
AKT, AK transforming; DSL, Delta/Serrate/Lag-2; ERK, extracellular signal regulated kinase; MEK, mitogen-activated protein kinase; mTOR, mam-
malian target of rapamycin; PI3K, phosphoinositide 3-kinase; RAF, rapidly accelerated fibrosarcoma; RAS, rat sarcoma; SMAD, homologs of the 
Drosophila protein, mothers against decapentaplegic (Mad) and the Caenorhabditis elegans protein Sma; TGF-β, transforming growth factor beta; VEGF, 
vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor.
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This can be achieved with the available genetic tests that 
are validated clinically for vascular anomalies. These tests 
are based on a targeted next generation sequencing 
approach, which will help identify genotype–phenotype 
correlations and possible new therapeutic targets for certain 
gene mutations.120

Conclusion

Several molecular signaling pathways with potential thera-
peutic targets have been identified and demonstrated to con-
tribute to the development of various vascular anomalies. 
Compared to current classification systems, classifying vas-
cular malformations based on their molecular pathogenesis 
is likely to improve diagnostic accuracy and relevance in 
terms of determining the underlying nature of the condition 
and their potential therapeutic target. A molecular classifica-
tion of vascular anomalies as proposed, is clearly needed to 
improve and complement the current classification systems.
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