246 research outputs found

    Ecology: Death and Destruction Determine Diversity

    Get PDF
    Death can be good, bad or indifferent for biodiversity. New work confirms that predators can drive diversification of prey even in homogeneous environments, but suggests that this effect is crucially dependent upon the frequency and intensity of other mass-mortality events

    Selective conditions for a multidrug resistance plasmid depend on the sociality of antibiotic resistance"

    Get PDF
    Multidrug resistance (MDR) plasmids frequently carry antibiotic resistance genes conferring qualitatively different mechanisms of resistance. We show here that the antibiotic concentrations selecting for the RK2 plasmid inEscherichia colidepend upon the sociality of the drug resistance: the selection for selfish drug resistance (efflux pump) occurred at very low drug concentrations, just 1.3% of the MIC of the plasmid-free antibiotic-sensitive strain, whereas selection for cooperative drug resistance (modifying enzyme) occurred at drug concentrations exceeding the MIC of the plasmid-free strain

    Parallel compensatory evolution stabilizes plasmids across the parasitism-mutualism continuum

    Get PDF
    Plasmids drive genomic diversity in bacteria via horizontal gene transfer [1 and 2]; nevertheless, explaining their survival in bacterial populations is challenging [3]. Theory predicts that irrespective of their net fitness effects, plasmids should be lost: when parasitic (costs outweigh benefits), plasmids should decline due to purifying selection [4, 5 and 6], yet under mutualism (benefits outweigh costs), selection favors the capture of beneficial accessory genes by the chromosome and loss of the costly plasmid backbone [4]. While compensatory evolution can enhance plasmid stability within populations [7, 8, 9, 10, 11, 12, 13, 14 and 15], the propensity for this to occur across the parasitism-mutualism continuum is unknown. We experimentally evolved Pseudomonas fluorescens and its mercury resistance mega-plasmid, pQBR103 [ 16], across an environment-mediated parasitism-mutualism continuum. Compensatory evolution stabilized plasmids by rapidly ameliorating the cost of plasmid carriage in all environments. Genomic analysis revealed that, in both parasitic and mutualistic treatments, evolution repeatedly targeted the gacA/gacS bacterial two-component global regulatory system while leaving the plasmid sequence intact. Deletion of either gacA or gacS was sufficient to completely ameliorate the cost of plasmid carriage. Mutation of gacA/gacS downregulated the expression of ∼17% of chromosomal and plasmid genes and appears to have relieved the translational demand imposed by the plasmid. Chromosomal capture of mercury resistance accompanied by plasmid loss occurred throughout the experiment but very rarely invaded to high frequency, suggesting that rapid compensatory evolution can limit this process. Compensatory evolution can explain the widespread occurrence of plasmids and allows bacteria to retain horizontally acquired plasmids even in environments where their accessory genes are not immediately useful

    The proficiency of the original host species determines community-level plasmid dynamics

    Get PDF
    Plasmids are common in natural bacterial communities, facilitating bacterial evolution via horizontal gene transfer. Bacterial species vary in their proficiency to host plasmids: Whereas plasmids are stably maintained in some species regardless of selection for plasmid-encoded genes, in other species, even beneficial plasmids are rapidly lost. It is, however, unclear how this variation in host proficiency affects plasmid persistence in communities. Here, we test this using multispecies bacterial soil communities comprising species varying in their proficiency to host a large conjugative mercury resistance plasmid, pQBR103. The plasmid reached higher community-level abundance where beneficial and when introduced to the community in a more proficient host species. Proficient plasmid host species were also better able to disseminate the plasmid to a wider diversity of host species. These findings suggest that the dynamics of plasmids in natural bacterial communities depend not only upon the plasmid's attributes and the selective environment, but also upon the proficiency of their host species

    Rapid compensatory evolution promotes the survival of conjugative plasmids

    Get PDF
    Conjugative plasmids play a vital role in bacterial adaptation through horizontal gene transfer. Explaining how plasmids persist in host populations however is difficult, given the high costs often associated with plasmid carriage. Compensatory evolution to ameliorate this cost can rescue plasmids from extinction. In a recently published study we showed that compensatory evolution repeatedly targeted the same bacterial regulatory system, GacA/GacS, in populations of plasmid-carrying bacteria evolving across a range of selective environments. Mutations in these genes arose rapidly and completely eliminated the cost of plasmid carriage. Here we extend our analysis using an individual based model to explore the dynamics of compensatory evolution in this system. We show that mutations which ameliorate the cost of plasmid carriage can prevent both the loss of plasmids from the population and the fixation of accessory traits on the bacterial chromosome. We discuss how dependent the outcome of compensatory evolution is on the strength and availability of such mutations and the rate at which beneficial accessory traits integrate on the host chromosome

    The impact of phages on interspecific competition in experimental populations of bacteria

    Get PDF
    BACKGROUND: Phages are thought to play a crucial role in the maintenance of diversity in natural bacterial communities. Theory suggests that phages impose density dependent regulation on bacterial populations, preventing competitive dominants from excluding less competitive species. To test this, we constructed experimental communities containing two bacterial species (Pseudomonas fluorescens and Pseudomonas aeruginosa) and their phage parasites. Communities were propagated at two environmental temperatures that reversed the outcome of competition in the absence of phage. RESULTS: The evenness of coexistence was enhanced in the presence of a phage infecting the superior competitor and in the presence of phage infecting both competitors. This occurred because phage altered the balance of competitive interactions through reductions in density of the superior competitor, allowing concomitant increases in density of the weaker competitor. However, even coexistence was not equally stable at the two environmental temperatures. CONCLUSION: Phage can alter competitive interactions between bacterial species in a way that is consistent with the maintenance of coexistence. However, the stability of coexistence is likely to depend upon the nature of the constituent bacteria-bacteriophage interactions and environmental conditions

    Bacteriophages limit the existence conditions for conjugative plasmids

    Get PDF
    Bacteriophages are a major cause of bacterial mortality and impose strong selection on natural bacterial populations, yet their effects on the dynamics of conjugative plasmids have rarely been tested. We combined experimental evolution, mathematical modeling, and individual-based simulations to explain how the ecological and population genetics effects of bacteriophages upon bacteria interact to determine the dynamics of conjugative plasmids and their persistence. The ecological effects of bacteriophages on bacteria are predicted to limit the existence conditions for conjugative plasmids, preventing persistence under weak selection for plasmid accessory traits. Experiments showed that phages drove faster extinction of plasmids in environments where the plasmid conferred no benefit, but they also revealed more complex effects of phages on plasmid dynamics under these conditions, specifically, the temporary maintenance of plasmids at fixation followed by rapid loss. We hypothesized that the population genetic effects of bacteriophages, specifically, selection for phage resistance mutations, may have caused this. Further mathematical modeling and individual-based simulations supported our hypothesis, showing that conjugative plasmids may hitchhike with phage resistance mutations in the bacterial chromosome

    Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities

    Get PDF
    Horizontal gene transfer is a fundamental process in bacterial evolution that can accelerate adaptation via the sharing of genes between lineages. Conjugative plasmids are the principal genetic elements mediating the horizontal transfer of genes, both within and between bacterial species. In some species, plasmids are unstable and likely to be lost through purifying selection, but when alternative hosts are available, interspecific plasmid transfer could counteract this and maintain access to plasmid-borne genes. To investigate the evolutionary importance of alternative hosts to plasmid population dynamics in an ecologically relevant environment, we established simple soil microcosm communities comprising two species of common soil bacteria, Pseudomonas fluorescens and Pseudomonas putida, and a mercury resistance (Hg R) plasmid, pQBR57, both with and without positive selection [i.e., addition of Hg(II)]. In single-species populations, plasmid stability varied between species: although pQBR57 survived both with and without positive selection in P. fluorescens, it was lost or replaced by nontransferable Hg R captured to the chromosome in P. putida. A simple mathematical model suggests these differences were likely due to pQBR57's lower intraspecific conjugation rate in P. putida. By contrast, in two-species communities, both models and experiments show that interspecific conjugation from P. fluorescens allowed pQBR57 to persist in P. putida via source-sink transfer dynamics. Moreover, the replacement of pQBR57 by nontransferable chromosomal Hg R in P. putida was slowed in coculture. Interspecific transfer allows plasmid survival in host species unable to sustain the plasmid in monoculture, promoting community-wide access to the plasmid-borne accessory gene pool and thus potentiating future evolvability
    • …
    corecore