114 research outputs found

    Convergence of miRNA Expression Profiling, α-Synuclein Interacton and GWAS in Parkinson's Disease

    Get PDF
    miRNAs were recently implicated in the pathogenesis of numerous diseases, including neurological disorders such as Parkinson's disease (PD). miRNAs are abundant in the nervous system, essential for efficient brain function and play important roles in neuronal patterning and cell specification. To further investigate their involvement in the etiology of PD, we conducted miRNA expression profiling in peripheral blood mononuclear cells (PBMCs) of 19 patients and 13 controls using microarrays. We found 18 miRNAs differentially expressed, and pathway analysis of 662 predicted target genes of 11 of these miRNAs revealed an over-representation in pathways previously linked to PD as well as novel pathways. To narrow down the genes for further investigations, we undertook a parallel approach using chromatin immunoprecipitation-sequencing (ChIP-seq) analysis to uncover genome-wide interactions of α-synuclein, a molecule with a central role in both monogenic and idiopathic PD. Convergence of ChIP-seq and miRNomics data highlighted the glycosphingolipid biosynthesis and the ubiquitin proteasome system as key players in PD. We then tested the association of target genes belonging to these pathways with PD risk, and identified nine SNPs in USP37 consistently associated with PD susceptibility in three genome-wide association studies (GWAS) datasets (0.46≤OR≤0.63) and highly significant in the meta-dataset (3.36×10−4<p<1.94×10−3). A SNP in ST8SIA4 was also highly associated with PD (p = 6.15×10−3) in the meta-dataset. These findings suggest that several miRNAs may act as regulators of both known and novel biological processes leading to idiopathic PD

    Regulation of healthcare ethics committees in Europe

    Get PDF
    In this article, the question is discussed if and how Healthcare Ethics Committees (HECs) should be regulated. The paper consists of two parts. First, authors from eight EC member countries describe the status quo in their respective countries, and give reasons as to the form of regulation they consider most adequate. In the second part, the country reports are analysed. It is suggested that regulation of HECs should be central and weak. Central regulation is argued to be apt to improve HECs’ accountability, relevance and comparability. To facilitate biomedical citizenship and ethical reflection, regulation should at the same time be weak rather than strict. Independence of HECs to deliberate about ethical questions, and to give solicited and unsolicited advice, should be supported and only interfered with by way of exception. One exception is when circumstances become temporary adversarial to ethical deliberation in healthcare institutions. In view of European unification, steps should be taken to develop consistent policies for both Eastern and Western European countries

    Is human blood a good surrogate for brain tissue in transcriptional studies?

    Get PDF
    Abstract Background Since human brain tissue is often unavailable for transcriptional profiling studies, blood expression data is frequently used as a substitute. The underlying hypothesis in such studies is that genes expressed in brain tissue leave a transcriptional footprint in blood. We tested this hypothesis by relating three human brain expression data sets (from cortex, cerebellum and caudate nucleus) to two large human blood expression data sets (comprised of 1463 individuals). Results We found mean expression levels were weakly correlated between the brain and blood data (r range: [0.24,0.32]). Further, we tested whether co-expression relationships were preserved between the three brain regions and blood. Only a handful of brain co-expression modules showed strong evidence of preservation and these modules could be combined into a single large blood module. We also identified highly connected intramodular "hub" genes inside preserved modules. These preserved intramodular hub genes had the following properties: first, their expression levels tended to be significantly more heritable than those from non-preserved intramodular hub genes (p &lt; 10-90); second, they had highly significant positive correlations with the following cluster of differentiation genes: CD58, CD47, CD48, CD53 and CD164; third, a significant number of them were known to be involved in infection mechanisms, post-transcriptional and post-translational modification and other basic processes. Conclusions Overall, we find transcriptome organization is poorly preserved between brain and blood. However, the subset of preserved co-expression relationships characterized here may aid future efforts to identify blood biomarkers for neurological and neuropsychiatric diseases when brain tissue samples are unavailable

    Genotype–phenotype correlation in contactin-associated protein-like 2 (CNTNAP-2) developmental disorder

    Get PDF
    Contactin-associated protein-like 2 (CNTNAP2) gene encodes for CASPR2, a presynaptic type 1 transmembrane protein, involved in cell–cell adhesion and synaptic interactions. Biallelic CNTNAP2 loss has been associated with “Pitt-Hopkins-like syndrome-1” (MIM#610042), while the pathogenic role of heterozygous variants remains controversial. We report 22 novel patients harboring mono- (n = 2) and bi-allelic (n = 20) CNTNAP2 variants and carried out a literature review to characterize the genotype–phenotype correlation. Patients (M:F 14:8) were aged between 3 and 19 years and affected by global developmental delay (GDD) (n = 21), moderate to profound intellectual disability (n = 17) and epilepsy (n = 21). Seizures mainly started in the first two years of life (median 22.5 months). Antiseizure medications were successful in controlling the seizures in about two-thirds of the patients. Autism spectrum disorder (ASD) and/or other neuropsychiatric comorbidities were present in nine patients (40.9%). Nonspecific midline brain anomalies were noted in most patients while focal signal abnormalities in the temporal lobes were noted in three subjects. Genotype–phenotype correlation was performed by also including 50 previously published patients (15 mono- and 35 bi-allelic variants). Overall, GDD (p < 0.0001), epilepsy (p < 0.0001), hyporeflexia (p = 0.012), ASD (p = 0.009), language impairment (p = 0.020) and severe cognitive impairment (p = 0.031) were significantly associated with the presence of biallelic versus monoallelic variants. We have defined the main features associated with biallelic CNTNAP2 variants, as severe cognitive impairment, epilepsy and behavioral abnormalities. We propose CASPR2-deficiency neurodevelopmental disorder as an exclusively recessive disease while the contribution of heterozygous variants is less likely to follow an autosomal dominant inheritance pattern

    Gene expression profiling in whole blood of patients with coronary artery disease

    Get PDF
    Owing to the dynamic nature of the transcriptome, gene expression profiling is a promising tool for discovery of disease-related genes and biological pathways. In the present study, we examined gene expression in whole blood of 12 patients with CAD (coronary artery disease) and 12 healthy control subjects. Furthermore, ten patients with CAD underwent whole-blood gene expression analysis before and after the completion of a cardiac rehabilitation programme following surgical coronary revascularization. mRNA and miRNA (microRNA) were isolated for expression profiling. Gene expression analysis identified 365 differentially expressed genes in patients with CAD compared with healthy controls (175 up- and 190 down-regulated in CAD), and 645 in CAD rehabilitation patients (196 up- and 449 down-regulated post-rehabilitation). Biological pathway analysis identified a number of canonical pathways, including oxidative phosphorylation and mitochondrial function, as being significantly and consistently modulated across the groups. Analysis of miRNA expression revealed a number of differentially expressed miRNAs, including hsa-miR-140-3p (control compared with CAD, P=0.017), hsa-miR-182 (control compared with CAD, P=0.093), hsa-miR-92a and hsa-miR-92b (post- compared with pre-exercise, P<0.01). Global analysis of predicted miRNA targets found significantly reduced expression of genes with target regions compared with those without: hsa-miR-140-3p (P=0.002), hsa-miR-182 (P=0.001), hsa-miR-92a and hsa-miR-92b (P=2.2×10−16). In conclusion, using whole blood as a ‘surrogate tissue’ in patients with CAD, we have identified differentially expressed miRNAs, differentially regulated genes and modulated pathways which warrant further investigation in the setting of cardiovascular function. This approach may represent a novel non-invasive strategy to unravel potentially modifiable pathways and possible therapeutic targets in cardiovascular disease

    Identification of brain transcriptional variation reproduced in peripheral blood: an approach for mapping brain expression traits

    Get PDF
    Genome-wide gene expression studies may provide substantial insight into gene activities and biological pathways differing between tissues and individuals. We investigated such gene expression variation by analyzing expression profiles in brain tissues derived from eight different brain regions and from blood in 12 monkeys from a biomedically important non-human primate model, the vervet (Chlorocebus aethiops sabaeus). We characterized brain regional differences in gene expression, focusing on transcripts for which inter-individual variation of expression in brain correlates well with variation in blood from the same individuals. Using stringent criteria, we identified 29 transcripts whose expression is measurable, stable, replicable, variable between individuals, relevant to brain function and heritable. Polymorphisms identified in probe regions could, in a minority of transcripts, confound the interpretation of the observed inter-individual variation. The high heritability of levels of these transcripts in a large vervet pedigree validated our approach of focusing on transcripts that showed higher inter-individual compared with intra-individual variation. These selected transcripts are candidate expression Quantitative Trait Loci, differentially regulating transcript levels in the brain among individuals. Given the high degree of conservation of tissue expression profiles between vervets and humans, our findings may facilitate the understanding of regional and individual transcriptional variation and its genetic mechanisms in humans. The approach employed here—utilizing higher quality tissue and more precise dissection of brain regions than is usually possible in humans—may therefore provide a powerful means to investigate variation in gene expression relevant to complex brain related traits, including human neuropsychiatric diseases

    SlimPLS: A Method for Feature Selection in Gene Expression-Based Disease Classification

    Get PDF
    A major challenge in biomedical studies in recent years has been the classification of gene expression profiles into categories, such as cases and controls. This is done by first training a classifier by using a labeled training set containing labeled samples from the two populations, and then using that classifier to predict the labels of new samples. Such predictions have recently been shown to improve the diagnosis and treatment selection practices for several diseases. This procedure is complicated, however, by the high dimensionality if the data. While microarrays can measure the levels of thousands of genes per sample, case-control microarray studies usually involve no more than several dozen samples. Standard classifiers do not work well in these situations where the number of features (gene expression levels measured in these microarrays) far exceeds the number of samples. Selecting only the features that are most relevant for discriminating between the two categories can help construct better classifiers, in terms of both accuracy and efficiency. In this work we developed a novel method for multivariate feature selection based on the Partial Least Squares algorithm. We compared the method's variants with common feature selection techniques across a large number of real case-control datasets, using several classifiers. We demonstrate the advantages of the method and the preferable combinations of classifier and feature selection technique

    Transcriptional correlates of the pathological phenotype in a Huntington’s disease mouse model

    Get PDF
    Huntington disease (HD) is a fatal neurodegenerative disorder without a cure that is caused by an aberrant expansion of CAG repeats in exon 1 of the huntingtin (HTT) gene. Although a negative correlation between the number of CAG repeats and the age of disease onset is established, additional factors may contribute to the high heterogeneity of the complex manifestation of symptoms among patients. This variability is also observed in mouse models, even under controlled genetic and environmental conditions. To better understand this phenomenon, we analysed the R6/1 strain in search of potential correlates between pathological motor/cognitive phenotypical traits and transcriptional alterations. HD-related genes (e.g., Penk, Plk5, Itpka), despite being downregulated across the examined brain areas (the prefrontal cortex, striatum, hippocampus and cerebellum), exhibited tissue-specific correlations with particular phenotypical traits that were attributable to the contribution of the brain region to that trait (e.g., striatum and rotarod performance, cerebellum and feet clasping). Focusing on the striatum, we determined that the transcriptional dysregulation associated with HD was partially exacerbated in mice that showed poor overall phenotypical scores, especially in genes with relevant roles in striatal functioning (e.g., Pde10a, Drd1, Drd2, Ppp1r1b). However, we also observed transcripts associated with relatively better outcomes, such as Nfya (CCAAT-binding transcription factor NF-Y subunit A) plus others related to neuronal development, apoptosis and differentiation. In this study, we demonstrated that altered brain transcription can be related to the manifestation of HD-like symptoms in mouse models and that this can be extrapolated to the highly heterogeneous population of HD patients

    Design and implementation of the canadian kidney disease cohort study (CKDCS): A prospective observational study of incident hemodialysis patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many nephrology observational studies use renal registries, which have well known limitations. The Canadian Kidney Disease Cohort Study (CKDCS) is a large prospective observational study of patients commencing hemodialysis in five Canadian centers. This study focuses on delineating potentially reversible determinants of adverse outcomes that occur in patients receiving dialysis for end-stage renal disease (ESRD).</p> <p>Methods/Design</p> <p>The CKDCS collects information on risk factors and outcomes, and stores specimens (blood, dialysate, hair and fingernails) at baseline and in long-term follow-up. Such specimens will permit measurements of biochemical markers, proteomic and genetic parameters (proteins and DNA) not measured in routine care. To avoid selection bias, all consenting incident hemodialysis patients at participating centers are enrolled, the large sample size (target of 1500 patients), large number of exposures, and high event rates will permit the exploration of multiple potential research questions.</p> <p>Preliminary Results</p> <p>Data on the baseline characteristics from the first 1074 subjects showed that the average age of patients was 62 (range; 50-73) years. The leading cause of ESRD was diabetic nephropathy (41.9%), and the majority of the patients were white (80.0%). Only 18.7% of the subjects received dialysis in a satellite unit, and over 80% lived within a 50 km radius of the nearest nephrologist's practice.</p> <p>Discussion</p> <p>The prospective design, detailed clinical information, and stored biological specimens provide a wealth of information with potential to greatly enhance our understanding of risk factors for adverse outcomes in dialysis patients. The scientific value of the stored patient tissue will grow as new genetic and biochemical markers are discovered in the future.</p
    corecore