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Abstract

Contactin-associated protein-like 2 (CNTNAP2) gene encodes for CASPR2, a presynaptic type 1 transmembrane protein,
involved in cell—cell adhesion and synaptic interactions. Biallelic CNTNAP2 loss has been associated with “Pitt-Hopkins-
like syndrome-1” (MIM#610042), while the pathogenic role of heterozygous variants remains controversial. We report 22
novel patients harboring mono- (n=2) and bi-allelic (n=20) CNTNAP2 variants and carried out a literature review to char-
acterize the genotype—phenotype correlation. Patients (M:F 14:8) were aged between 3 and 19 years and affected by global
developmental delay (GDD) (n=21), moderate to profound intellectual disability (n=17) and epilepsy (n=21). Seizures
mainly started in the first two years of life (median 22.5 months). Antiseizure medications were successful in controlling
the seizures in about two-thirds of the patients. Autism spectrum disorder (ASD) and/or other neuropsychiatric comorbidi-
ties were present in nine patients (40.9%). Nonspecific midline brain anomalies were noted in most patients while focal
signal abnormalities in the temporal lobes were noted in three subjects. Genotype—phenotype correlation was performed by
also including 50 previously published patients (15 mono- and 35 bi-allelic variants). Overall, GDD (p < 0.0001), epilepsy
(» <0.0001), hyporeflexia (p =0.012), ASD (p =0.009), language impairment (p =0.020) and severe cognitive impairment
(p=0.031) were significantly associated with the presence of biallelic versus monoallelic variants. We have defined the main
features associated with biallelic CNTNAP2 variants, as severe cognitive impairment, epilepsy and behavioral abnormalities.
We propose CASPR2-deficiency neurodevelopmental disorder as an exclusively recessive disease while the contribution of
heterozygous variants is less likely to follow an autosomal dominant inheritance pattern.

Introduction

Contactin-associated protein-like 2 (CNTNAP?2) is one of
the largest genes in the human genome located on chromo-
some 7q35-36.1 (Nakabayashi and Scherer 2001). It encodes
for CASPR2, a member of the neurexin superfamily of cell
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adhesion proteins (Poliak et al. 1999). CASPR2 is a presyn-
aptic type 1 transmembrane protein, with a large extracel-
lular and smaller intracellular portion that participates in
cell—cell adhesion and synaptic interactions. CNTNAP?2 is
expressed throughout the developing and adult central nerv-
ous system (CNS) (Pefiagarikano 2011). Mouse studies have
uncovered a role for CASPR2 in neuronal migration and
postmitotic neuronal development (Canali et al. 2018; Fer-
nandes et al. 2019). Experimental studies on knock-out mice
and in human cell lines support the hypothesis that CASPR2
is involved in neuronal migration, myelination, and neuronal
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transmission with a reduction in both inhibitory GABAergic
neuronal numbers and excitatory neurotransmission (Pefia-
garikano 2011).

A homozygous 1-bp deletion (c.3709delG) of CNTNAP2
was initially detected in an Old Order Amish kindred, whose
nine affected children exhibited mild motor delay until the
onset of intractable seizures during infancy, which were
followed by deterioration in learning and language abili-
ties, and social behavior (Strauss et al. 2006). Three sub-
jects showed unilateral cortical dysplasia of the anterior
temporal lobe, and neuronal migration defects from brain
specimen biopsies. Altogether, this neurological disorder
was named cortical dysplasia-focal epilepsy (CDFE) syn-
drome (Strauss et al. 2006). Subsequently, homozygous or
compound heterozygous variants and/or intragenic deletions
within CNTNAP2 were associated with Pitt-Hopkins like
syndrome 1 (PTHSL1, MIM#610042), with variable fea-
tures that included intellectual disability (ID), early seizure
onset, regression of language ability, and hyper-breathing
patterns (Strauss et al. 2006; Zweier et al. 2009; Smogavec
et al. 2016). Given the lack of typical Pitt-Hopkins craniofa-
cial features and hyper-breathing patterns in most patients, it
has recently been proposed that biallelic loss of CNTNAP2
results in a disorder called “CASPR2-deficiency neurodevel-
opmental disorder (NDD)”, which includes severe ID, early
infantile seizures, language regression, variable presence of
autistic features, hyporeflexia and ataxia (Rodenas-Cuadrado
et al. 2016).

A growing body of literature over the last two decades
underscored a possible role of heterozygous chromosomal
translocations and deletions, single nucleotide polymor-
phisms (SNPs), and rare heterozygous variants of CNT-
NAP2. These were found in a wide array of neuropsychi-
atric disorders, such as autism spectrum disorder (ASD),
schizophrenia, obsessive—compulsive disorder, Gilles de la
Tourette syndrome, attention deficit hyperactivity disorder
(ADHD), dyslexia, specific language impairment and stut-
tering (Verkerk et al. 2003; Arking et al. 2008; Friedman
et al. 2008; Mikhail et al. 2011; Newbury et al. 2011; Ji
et al. 2013; Centanni et al. 2015). However, heterozygous
CNTNAP?2 variations are also present in the healthy pop-
ulation including healthy parents of children with either
mono- or biallelic variants. Thus, the evidence for the role
of heterozygous variants in CNTNAP2 in neuropsychiatric
disorders has yet to be clarified (Toma et al. 2018). The iden-
tification and description of new patients with CNTNAP2
variants may further define the criteria of the syndrome
and better characterize its genotype—phenotype correlation
(Rodenas-Cuadrado et al. 2016). We report 22 patients har-
boring mono- or biallelic variants in CNTNAP2 and show
genotype—phenotype correlations by including a further 50
previously reported patients.

@ Springer

Material and methods
Patient recruitment

We recruited 22 previously unreported patients from 17
unrelated families carrying mono or biallelic variants in
CNTNAP?2. Patients were followed up at 16 centers world-
wide for developmental and epileptic encephalopathy (DEE)
and/or neurodevelopmental disorders. Genetic analyses were
performed either in a diagnostic or research setting. Subse-
quently, they were enrolled using the international platform
GeneMatcher (Sobreira et al. 2015).

Firstly, the respective referring clinicians were asked to
fill in a spreadsheet with all clinical and genetic information
for each patient (Online Resource). Secondly, all available
clinical and genetic data, electroencephalography (EEG) and
neuroradiological images were reviewed by expert pediat-
ric neurologists, neuroradiologist and geneticists. Written
informed consent was obtained from parents or guardians.

Genetic testing

Most CNTNAP?2 variants were detected by epilepsy Next
Generation Sequencing (NGS) panel (n=11) or autism/ID
NGS panel (n=1). Exome sequencing (ES) (singleton n=3;
trios n="7) was performed in the respective collaborating
centers using different analysis platforms according to the
BWA/GATK’s based pipelines. Targeted Sanger sequenc-
ing using standard methods was also performed either for
verification of identified variants or segregation analysis.
Sequencing methods and additional genetic analyses per-
formed per individual are summarized in Online Resource.
All variants were classified according to the ACMG/AMP
criteria (Richards et al. 2015). CNTNAP2 variants are listed
according to the transcript NM_014141.6 and copy number
variants (CNV) refer to the hg19/GRCh37 assembly.

Literature review

We performed a literature review on MEDLINE (accessed
by PubMed, updated to December 2022) with the search
term “CNTNAP2” and “CASPR2”, including articles with
reported pathogenic or likely pathogenic variants or vari-
ants of uncertain significance (VUS) in CNTNAP2 that were
suspected to contribute to the phenotype of patients. Patients
with copy number variation (CNV) that encompassed other
genes that were likely to contribute to the phenotype and/or
reports without available clinical information were excluded.
We also excluded reports of subjects with limited clinical
information.
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Statistical analysis

We used descriptive analysis to characterize our cohort and
previously published CNTNAP2 patients. Based on both
datasets, we compared the phenotypes of patients harboring
a heterozygosity variant versus (vs.) patients with biallelic
variants using chi-squared test or a Fisher’s exact test.

Results
Patients

We enrolled 22 patients (14 males) aged between 3 and
19 years (Table 1). Consanguinity was reported in six fami-
lies (6/17, 35.3%); a family history of neurological diseases
and/or disabilities was present in 11/17 subjects (64.7%).

Auxology and dysmorphology

Five patients (5/22, 22.7%) presented with failure to thrive.
Four subjects had microcephaly while one was found to be
macrocephalic. A total of eight patients (8/22, 36.3%) exhib-
ited non-specific facial dysmorphisms (Fig. 1a). In addition,
café-au-lait stains were observed in two patients.

Neurodevelopment

Global developmental delay (GDD), of variable severity, is
reported in almost all patients (21/22, 95.5%). Moreover,
individual-1 (Ind-1) and Ind-3 had early normal develop-
ment before the onset of epilepsy, leading to major irrevers-
ible regression, while Ind-17 experienced a partial recov-
ery of her cognitive and motor skills after seizure control.
Intellectual disability (ID) has been assessed as mild in 4
patients, moderate in 9, severe in 7 and profound in 1 sub-
ject, whereas Ind-22 had a borderline intelligence quotient.

Epilepsy

Epilepsy occurred in 21 patients (95.5%) with onset at
median age of 22.5 months [17 25th percentile-29.2 75th
percentile]. Major findings are summarized in Table 2.
Seizures were mainly described as primary generalized
tonic—clonic (GTC) seizures (11/21, 52.3%) or focal motor
seizures with impaired awareness (FIA) (11/21, 52.3%)
and focal to bilateral (7/21, 33.3%). Tonic seizures (5/21,
23.8%), absences (3/21, 14.3%) and atonic seizures (2/21,
9.5%) were also reported. In three patients fever represented
a trigger (3/21, 14.3%). Status epilepticus has occurred in
2 individuals (2/21, 9.5%). Half of the cohort experienced
daily seizures at onset (10/21, 47.6%). Median number of
anti-seizure medications (ASMs), prescribed over the course

of their history, was 3 [3 25th percentile-5 75th percentile].
Eight patients (8/21, 38%) achieved seizure freedom for
more than one year, and the other 8 (8/21, 38%) benefited
from ASMs by showing a considerable seizure frequency
reduction greater than 50%. None of them discontinued
ASMs nor did any of them undergo epilepsy surgery. EEG
often showed epileptic discharges in the temporal or fronto-
temporal regions (8/21, 38%) (Fig. 2).

Neuropsychiatric features and other neurological
and neurobehavioral findings

Expressive and/or receptive language was consistenly
impaired in all patients. A formal diagnosis of ASD was
reported in nine patients (9/22, 40.9%), variably associated
with other neuropsychiatric comorbidities such as hyperac-
tivity (4/21, 19%) and behavioral issues (4/21, 19%). More
specifically, sudden episodes of aggressive and violent
behavior were reported in Ind-3, Ind-6 and Ind-21, while
psychomotor agitation occurred occasionally in Ind-8.
Coprophagia was reported in two sisters (2/22, 9.1%) from
family 2. No other psychiatric comorbidities have been
identified in our population. Neurological examination
revealed hypotonia of varying degrees in 12 cases (12/22,
55%) and hyporeflexia in 5 (5/22, 23%). Six patients exhib-
ited an ataxic gait (6/22, 27%). Two patients presented with
breathing disorders consisting of episodes of hyperpnea and
apnea during the day (2/22, 9%). No sensorineural deficits
or extrapyramidal disorders were noted.

Neuroimaging

Neuroimaging studies were performed in 21/22 subjects,
including 18 brain magnetic resonance imaging (MRI) and
3 computed tomography (CT) studies (Ind-1, Ind-5 and
Ind-7). Brain MRI revealed non-specific dysmorphisms in
the majority of subjects (11/21, 52.4%) (Fig. 1b), including
inferior cerebellar vermis hypoplasia (9/21, 42.9%), abnor-
malities of the corpus callosum (6/21, 28.5%; thick in two
cases and thin in four other cases), superior cerebellar ver-
mis atrophy (4/21, 19%), mild white matter volume reduc-
tion with ventricular enlargement (3/21, 14.3%), cerebellar
dentate nuclei signal alterations (2/21, 9.5%), and mild cer-
ebral atrophy (2/21, 9.5%). Signal abnormalities consistent
with focal cortical dysplasia were noted at the level of the
anterior temporal lobes in three subjects (Ind-2, Ind-8, and
Ind-12). Neuroimaging was unremarkable in ten patients
(10/21, 47.6%).

Other comorbidities

Extra-neurological comorbidities occurred in nine indi-
viduals (9/22, 40.9%), including recurrent respiratory
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A

Fig.1 a Ind- 5, -6, -7, -8, -12, -14, -15, -16 and -17 iconography is
shown (from left to right). Common facial dysmorphisms are shown
including prominent ears (Ind-6 and Ind-7) and hypertelorism (Ind-6,
Ind-12). Ind-7 shows mild ptosis of the left eyelid. Ind-14 presents
with lips thickness, prognathism, and prominent philtrum. A lean,
elongated face with mild lax skin is observed in Ind-15. Ind-17 has
sparse hair. No noticeable dysmorphisms are appreciable in Ind-
5, Ind-8, Ind-16 and Ind-17. b Brain MRI findings of the patients
and a control; sagittal T1-weighted (first) and coronal and/or axial
T2-weighted (middle and/or last) images. Inferior cerebellar ver-
mis hypoplasia is noted in all the cases included in the figure (thin

infections, haematological disorders (pancytopenia,
haemolytic anaemia) and rectal prolapse (2/22, 9%). Pre-
cocious puberty, asthma, hypogammaglobulinemia, gas-
troesophageal reflux and osteopenia were reported once
(1/22, 4.5%). None of our patients presented with congeni-
tal abnormalities of any extra-CNS organ. Two patients in
our cohort deceased: the first at the age of 13 (Ind-1) due
to cachexia in the context of feeding difficulties and severe
GDD, while the other (Ind-20) at 7 years for unknown rea-
sons. No statistically significant differences were observed
when comparing patients with a history of consanguinity
and non-consanguinity.

arrows) associated with mild superior cerebellar vermis atrophy in
Ind-3, Ind-8, Ind-12, and Ind-17 (empty arrowheads). A thin corpus
callosum is present in Ind-2, Ind-13 and Ind-16, while a thick pos-
terior corpus callosum is noted in Ind-3 and Ind-8 (empty arrows).
Mild white matter volume reduction with consequent ventricular
enlargement is noted in Ind-3, Ind-13 and Ind-16 (asterisks). Cerebel-
lar dentate nuclei T2 hyperintensity is visible in Ind-6 and Ind-12
(arrowheads). In Ind-2, Ind-8 and Ind-12 there are additional uni- or
bilateral T2 hyperintensities at the level of the anterior temporal lobes
(thick arrows) in keeping with focal cortical dysplasias

Genetic results

A total of 18 distinct CNTNAP?2 variants were identified,
seven of which were novel (Online Resource). Except for
two heterozygous variants, all other individuals were found
to harbor biallelic variants; either homozygous (n=16) or
compound heterozygous (n=4) variants. Variants included
ten likely gene-disrupting (LGD) variants, four intragenic
deletions (identified either by microarray or an epilepsy
NSG gene panel) and three missense variants. Sanger
sequencing confirmed variants segregation with the phe-
notype within these families. All variants were absent or
extremely rare in human population variant databases (allele
frequency ranging from 0 to 0.0001557 in the gnomAD data-
base). None of the variants were reported in a homozygous
state in healthy individuals. LGD variants were scattered

@ Springer
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18 charmel, bipolar longitudinal montage SI10-20. HF 70 Hz, LF 15 Hz, sens 10 ulV/mm

Fig.2 EEG features. a. Ind-1, 10 years old. Sleep recording. High
voltage bilateral anterior delta waves and focal spikes over the fron-
tal regions of both hemispheres. b Ind-2, 2 years 9 months. Awake
recording. Synchronous and asynchronous spikes on bilateral fron-

throughout CNTNAP2 and included four different frameshift
and four nonsense changes and two splice site variants. All
frameshift and nonsense variants were predicted to result
in premature termination codon and, therefore, likely
be degraded through nonsense-mediated mRNA decay
(NMD). As such these were classified as pathogenic/likely
pathogenic. Of note, the frameshift variant c.1361_1362del
p-(Asnd54ArgfsTer24) was recurrent in eight subjects of
families 1—4 of Croatian Roman ancestry and the nonsense
variant ¢.3262C > Tp.(Arg1088Ter) was found in three sub-
jects of two nonrelated Egyptian families suggesting these
variants are likely to be founder mutations in these popula-
tions. Two individuals carried homozygous splicing variants
as follows: the variant ¢.1777+2T > C (Ind-11) affects the
consensus GT-splice donor site of intron 11 and was com-
putationally predicted to cause a loss of a splice donor site
disrupting the reading frame and resulting in NMD (Splice
Al score 0.98). Thus, it was classified as likely pathogenic
according to the ACMG criteria. The homozygous variant
¢.550+5G>T (Ind-15) predicts a loss of a splice donor site
(Splice Al score 0.66), yet it remains a VUS according to the
current ACMG guidelines. CGH-array revealed two intra-
genic CNTNAP2 deletions in Ind-17: a 31,949 bp deletion in
7q35(147,651,818-147,683,766) encompassing exon 15 and
inherited by her mother and a paternally inherited deletion of

@ Springer

18 channel, bipolar longitudinal montage SI10-20. HF 70 Hz, LF 1 Hz, sens 10 uV/mm

tal-temporal regions. ¢ Ind-10, 3 years old. Awake recording. Right
central-temporal medium voltage sharp waves. d Ind-10, 3 years old.
Sleep recording. Nearly sub-continuous trend of right central-tempo-
ral sharp waves in the N2 phase, with a tendency to spread

9317 bp in 7q36.1 (148,071,316-148,080,632), encompass-
ing exon 22. These deletions were confirmed by multiplex
ligation-dependent probe amplification. Epilepsy gene panel
showed two compound heterozygous deletions in Ind-10,
namely the ¢.98-?_402+7? that encompasses exons 2-3 of
CNTNAP2 and the heterozygous deletion ¢.98-?_1348+7,
encompassing exons 2—8. Both deletions were confirmed
by CGH-array. Individual-13 harbored the compound het-
erozygous missense variant ¢.400T > G p.(Trp134Gly) and
€.2449G > A p.(Gly817Arg) that were classified as VUS.
We included subjects harboring these biallelic VUS given
supporting criteria of pathogenicity and consistent phe-
notype. The heterozygous missense variant ¢c.3814A>T
p-(Ile1272Phe) was found to be de novo in individual 21
while an ID/ASD panel identified in Ind-22 the frameshift
variant c.1628del p.(Ser543Ilefs*13) that was maternally
inherited. Both variants were classified as VUS.

Overall, we ascertained a diagnosis with biallelic CNT-
NAP?2 pathogenic/likely pathogenic variants in 18 out of
22 subjects included in this study. No other pathogenic/
likely pathogenic variants were identified in the currently
known NDD-related genes in the ES data in these families.
Additional VUS detected in our cohort either by ES or
microarray are listed in Online Resource.
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Previously published cases

We identified 50 previously published patients from 17
articles (Strauss et al. 2006; Friedman et al. 2008; Jackman
et al. 2009; Zweier et al. 2009; Gregor et al. 2011; Al Mur-
rani et al. 2012; Watson et al. 2014; Pippucci et al. 2015;
Smogavec et al. 2016; Rodenas-Cuadrado et al. 2016; Ric-
cardi et al. 2019; Falsaperla et al. 2020; Freri et al. 2021; Lu
et al. 2021; Mittal et al. 2021; Scala et al. 2021; Badshash
et al. 2022) reporting the clinical phenotype of patients car-
rying pathogenic or likely pathogenic CNTNAP2 variants

Fig.3 Summary of the key
clinical features of patients
carrying mono- or bi-allelic
pathogenic CNTNAP?2 variants
in our cohort and the literature.
ID intellectual disability, NPsy
neuropsychiatric findings.
Statistical significance refers
to patients with biallelic versus

Other NPsy

Psycomotor delay ***

or VUS suspected to contribute to the phenotype (Online
Resource). Figure 3 summarizes the main phenotypic fea-
tures observed in our cohort and in the literature, distin-
guishing between heterozygous and homozygous variants,
while variant positions are shown in Fig. 4.

Genotype-phenotype correlation

Altogether, GDD and epilepsy were significantly more pre-
sent in patients harboring homozygous variants than in hete-
rozygous patients (p <0.0001) (Online Resource). Similarly,

Our cohort (n=22) Previously published patients (n=50)
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Statistical
significance:
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Fig.4 CNTNAP?2 variants position in our cohort (in bold, # individual) and previously published patients. The arrow indicates a deletion, and the

line a duplication
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ASD (p=0.009), hyporeflexia (p =0.012), language impair-
ment (p=0.020), as well as a moderate to severe degree of
ID (p=0.031) were more frequent in patients with biallelic
variants.

Discussion

We reported a cohort of 22 new patients harboring either
biallelic (20) or monoallelic variants (2) in CNTNAP2.
To the best of our knowledge, this is the largest cohort of
patients with CNTNAP?2 variants reported together to date.
Our study corroborates previous literature, confirming that
CNTNAP?2 deficiency due to biallelic variants leads to a
distinct neurodevelopmental disorder typically character-
ized by developmental delay, seizure onset within the first
2 years followed by developmental regression, moderate
to severe ID and variable occurrence of ASD and behavio-
ral abnormalities. Similarly to previous reports, hypotonia
and hyporeflexia are frequent, whereas only a few patients
display ataxia. Likewise, occipital frontal circumference is
normal in the majority of patients in contrast to the initial
reports of relative macrocephaly. Furthermore, our patients
harboring biallelic variants do not display the typical crani-
ofacial features and abnormal breathing patterns reported for
PTHS. Together, this supports previous literature suggesting
that the name PTHS1 should be replaced by CASPR2-defi-
ciency NDD (Rodenas-Cuadrado et al. 2016). In addition,
the occurrence of epilepsy in virtually all patients within
the first 2 years with consequent regression of development
and cognitive impairment would suggest a DEE. Epilepsy is
indeed a cardinal feature in patients with biallelic CNTNAP2
variants. The onset of seizures typically occurs in the first
two to three years of life. Seizures initially are very fre-
quent and difficult to treat. However, most patients achieve
good seizure control within a few years after onset. Seizures
are most frequently focal motor, at times with secondary
generalization This is in line with previous descriptions in
the literature (Strauss et al. 2006; Rodenas-Cuadrado et al.
2016; Smogavec et al. 2016). Cortical areas most typically
involved seem to be the frontal and temporal regions (Strauss
et al. 2006).

CASPR?2 is found in the inhibitory presynaptic compart-
ment and, to a lesser extent, in the excitatory postsynaptic
compartment where it is involved in several pivotal pro-
cesses, such as neurite development and synapse matura-
tion, stability, and function (Horresh et al. 2008). It also
localizes to juxtaparanodes of myelinated axons, where it is
involved in neuron-glia interactions, and mediates the clus-
tering of potassium channels via interaction with contactin
2 (also known as TAG-1) (Horresh et al. 2008). Similar to
humans, Cntnap2—/—mice display epilepsy in addition to
ASD features and cortical developmental abnormalities

@ Springer

(Pefiagarikano et al. 2011). RNAi-mediated knock-down of
Caspr2 produced a cell-autonomous decrease in dendritic
arborization and spine development in pyramidal neurons,
decreasing the number of excitatory and inhibitory synapse
numbers, and impairing synaptic transmission (Anderson
et al. 2012). Together, these observations suggest that a
perturbation of synaptic homeostasis and function due to
CASPR?2 deficiency leads to an imbalance of excitatory and
inhibitory post-synaptic currents in neural networks that may
contribute to epilepsy phenotypes (Anderson et al. 2012).

Strauss et al. (2006) described neuroimaging features of
focal cortical dysplasia in three subjects that were consistent
with findings of neuronal migration defects from brain biop-
sies. These results were in line with neuropathological and
physiological studies in the Cntnap2—/—mice showing neu-
ronal migration abnormalities, reduced number of interneu-
rons and abnormal neuronal network activity (Pefiagarikano
et al. 2011). Subsequent to this, no further reports have
described malformations of cortical development: however,
cerebellar hypoplasia and nonspecific white matter abnor-
malities have been occasionally reported in subjects with
biallelic CNTNAP2 variants (Zweier et al. 2009; Smogavec
et al. 2016). Here, we describe the largest cohort of sub-
jects for whom brain MRI was available, showing that three
subjects had unilateral or bilateral anterior temporal lobe
T2 hyperintensities consistent with focal cortical dysplasia,
supporting the notion of malformation of cortical develop-
ment due to CNTNAP2-deficiency. Interestingly, we also
noted several nonspecific findings that have been described
in subjects with PTHS, including callosal anomalies, white
matter volume reduction, dentate nuclei signal alterations
and other minor posterior fossa abnormalities.

All our patients suffered from severe speech impairment
and one-third had ASD or other behavioral abnormalities
including aggressive behavior and stereotypic movements.
There is evidence that supports a role for CNTNAP2 in lan-
guage development, including enriched expression during
human brain development in frontotemporal-subcortical
circuits known to be critical for human executive function
(Alarcon et al. 2008). Despite some conflicting results (Sam-
path et al. 2013; Murdoch et al. 2015; Toma et al. 2018;
Zhang et al. 2019), several studies have linked SNPs in
CNTNAP?2 variants with ASD and/or language-related dis-
orders (Vernes et al. 2008; Li et al. 2010; Gregor et al. 2011;
Uddin et al. 2021). Further, some SNPs (e.g. rs2710102 and
rs7794745) have been associated with abnormal activation
of the right inferior frontal gyrus (Broca’s area homologue)
and right lateral temporal cortex in subject with ASD and
reduced volume of specific grey matter areas (Whalley et al.
2011). Together this evidence supports an impact of CNT-
NAP2 variation on language related brain regions and pheno-
types; however, it is not yet clear what role (if any) CASPR2
has in the development of language.
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While the loss of function (LoF) mechanism due to bial-
lelic CNTNAP2 variants is well understood, the impact of
heterozygous CNTNAP?2 variants is more controversial. It
has been suggested that the phenotypic picture of each het-
erozygous variant may result from the combination of two
mechanisms. On the one hand a dominant-negative effect
on wild-type Caspr2 function might be due to endoplasmic
reticulum (ER) retention mimicking the homozygous null
phenotype (Canali and Goutebroze 2018). On the other hand
a loss of function mechanism for adhesion-defective variant
proteins, could enable the interaction with their extracel-
lular partners (Canali and Goutebroze 2018). According to
this model, the phenotype of our patient, Ind-21 (mild ID,
epilepsy and behavioral abnormalities) harboring the de
novo missense variant p.(Ile1272Phe) lying in the extracel-
lular domains may be due to a LoF mechanism if the pro-
tein is secreted from the ER. However, the impact of the de
novo frameshift variant in the patient (Ind-22) with isolated
ASD remains controversial since it is predicted to undergo
nonsense-mediated decay and thus it would unlikely exert
a dominant negative effect. It is also noteworthy that CNT-
NAP?2 is not constrained for missense and Lof variants in the
gnomAD databse (Z score — 0.29, pLI score 0) indicating
that heterozygous missense and Lof variants of CNTNAP2
are not subject to negative selection (Lek et al. 2016). This
is in line with the fact that carrier parents of CNTNAP2 vari-
ants are healthy. Furthermore, large scale studies on gene
enriched for de novo variants in NDD have failed to high-
light this gene with any meaningful significance (Kaplanis
et al. 2020; Satterstrom et al. 2020) and several other stud-
ies did not identify a significant burden for CNTNAP?2 rare
variants in patients with ASD or schizophrenia comparing to
controls (Murdoch et al. 2015; Toma et al. 2018; Zhang et al.
2019), suggesting that CNTNAP?2 is not a a primary risk
gene for psychiatric disorders. Although it might be possible
that CNTNAP2 heterozygous variants contribute to ASD and
related neuropsychiatric phenotypes with a polygenic inher-
itance pattern, it seems unlikely based on the above observa-
tions that they solely result in a neuropsychiatric phenotype
following a classical autosomal dominant Mendelian inherit-
ance. Taken together, we propose CNTNAP2-related NDD
as an exclusively recessive disorder while the dominant ver-
sion is becoming weaker with the increase body of evidence
in the literature and in human population variant databases.

In conclusion, we report the largest cohort of patients
with CNTNAP2 variants to date and define the core phe-
notype associated with biallelic CNTNAP2 variants. These
data suggest that patients with biallelic variants are likely to
develop severe cognitive impairment, epilepsy and variable
behavioral abnormalities.

In most cases, patients have an unremarkable perinatal
history and a normal psychomotor development or slightly
delayed during the first year of life. Concomitant with the

epilepsy onset, occurring more often during the second year
of life, developmental stagnation or regression is observed.
Epilepsy can be difficult to control at the beginning, with a
“stormy”” phase, while during childhood seizures are usu-
ally well-controlled with ASMs. Response to ASMs may
be associated with a slight cognitive improvement in some
cases, although most patients still suffer from moderate to
profound ID throughout their lives. In more severe cases,
feeding difficulties, failure to thrive with increased poten-
tially fatal comorbidities may be observed.

The role of heterozygous variants remains to be fully
elucidated. Future studies should address the functional
impact of heterozygous CNTNAP2 variants and the related
pathomechanisms with ultimately important implications for
patient management and counselling.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00439-023-02552-2.
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