395 research outputs found
A Halomethane thermochemical network from iPEPICO experiments and quantum chemical calculations
Internal energy selected halomethane cations CH3Cl+, CH2Cl2+, CHCl3+, CH3F+, CH2F2+, CHClF2+ and CBrClF2+ were prepared by vacuum ultraviolet photoionization, and their lowest energy dissociation channel studied using imaging photoelectron photoion coincidence spectroscopy (iPEPICO). This channel involves hydrogen atom loss for CH3F+, CH2F2+ and CH3Cl+, chlorine atom loss for CH2Cl2+, CHCl3+ and CHClF2+, and bromine atom loss for CBrClF2+. Accurate 0 K appearance energies, in conjunction with ab initio isodesmic and halogen exchange reaction energies, establish a thermochemical network, which is optimized to update and confirm the enthalpies of formation of the sample molecules and their dissociative photoionization products. The ground electronic states of CHCl3+, CHClF2+ and CBrClF2+ do not confirm to the deep well assumption, and the experimental breakdown curve deviates from the deep well model at low energies. Breakdown curve analysis of such shallow well systems supplies a satisfactorily succinct route to the adiabatic ionization energy of the parent molecule, particularly if the threshold photoelectron spectrum is not resolved and a purely computational route is unfeasible. The ionization energies have been found to be 11.47 ± 0.01 eV, 12.30 ± 0.02 eV and 11.23 ± 0.03 eV for CHCl3, CHClF2 and CBrClF2, respectively. The updated 0 K enthalpies of formation, ∆fHo0K(g) for the ions CH2F+, CHF2+, CHCl2+, CCl3+, CCl2F+ and CClF2+ have been derived to be 844.4 ± 2.1, 601.6 ± 2.7, 890.3 ± 2.2, 849.8 ± 3.2, 701.2 ± 3.3 and 552.2 ± 3.4 kJ mol–1, respectively. The ∆fHo0K(g) values for the neutrals CCl4, CBrClF2, CClF3, CCl2F2 and CCl3F and have been determined to be –94.0 ± 3.2, –446.6 ± 2.7, –702.1 ± 3.5, –487.8 ± 3.4 and –285.2 ± 3.2 kJ mol–1, respectively
Yeast m6 A methylated mRNAs are enriched on translating ribosomes during meiosis, and under rapamycin treatment
Interest in mRNA methylation has exploded in recent years. The sudden interest in a 40 year old discovery was due in part to the finding of FTO’s (Fat Mass Obesity) N6-methyladenosine (m6 A) deaminase activity, thus suggesting a link between obesity-associated diseases and the presence of m6 A in mRNA. Another catalyst of the sudden rise in mRNA methylation research was the release of mRNA methylomes for human, mouse and Saccharomyces cerevisiae. However, the molecular function, or functions of this mRNA ‘epimark’ remain to be discovered. There is supportive evidence that m6 A could be a mark for mRNA degradation due to its binding to YTH domain proteins, and consequently being chaperoned to P bodies. Nonetheless, only a subpopulation of the methylome was found binding to YTHDF2 in HeLa cells.The model organism Saccharomyces cerevisiae, has only one YTH domain protein (Pho92, Mrb1), which targets PHO4 transcripts for degradation under phosphate starvation. However, mRNA methylation is only found under meiosis inducing conditions, and PHO4 transcripts are apparently non-methylated. In this paper we set out to investigate if m6 A could function alternatively to being a degradation mark in S. cerevisiae; we also sought to test whether it can be induced under non-standard sporulation conditions. We find a positive association between the presence of m6 A and message translatability. We also find m6 A induction following prolonged rapamycin treatment
Whole-Genome Sequences and Classification of
In collaboration with the CDC’s Streptococcus Laboratory, we report here the whole-genome sequences of seven Streptococcus agalactiae bacteria isolated from laboratory-reared Long-Evans rats. Four of the S. agalactiae isolates were associated with morbidity accompanied by endocarditis, metritis, and fatal septicemia, providing an opportunity for comparative genomic analysis of this opportunistic pathogen.United States. National Institutes of Health (T32-OD010978)United States. National Institutes of Health (P30-ES002109
Two zinc finger proteins with functions in m6A writing interact with HAKAI
The methyltransferase complex (m6A writer), which catalyzes the deposition of N6-methyladenosine (m6A) in mRNAs, is highly conserved across most eukaryotic organisms, but its components and interactions between them are still far from fully understood. Here, using in vivo interaction proteomics, two HAKAI-interacting zinc finger proteins, HIZ1 and HIZ2, are discovered as components of the Arabidopsis m6A writer complex. HAKAI is required for the interaction between HIZ1 and MTA (mRNA adenosine methylase A). Whilst HIZ1 knockout plants have normal levels of m6A, plants in which it is overexpressed show reduced methylation and decreased lateral root formation. Mutant plants lacking HIZ2 are viable but have an 85% reduction in m6A abundance and show severe developmental defects. Our findings suggest that HIZ2 is likely the plant equivalent of ZC3H13 (Flacc) of the metazoan m6A-METTL Associated Complex
Litter aeration and spread of Salmonella in broilers
Litter quality in the poultry sector is one of the main parameters of health, productivity, and animal welfare. Therefore, innovative management methods have been developed to improve the quality of litter. One of them is litter aeration (LA) by tumbling. However, there is little information related to the effect of this technique on the spreading of pathogens of public health importance such as Salmonella. In this context, the objective of this study was to determine the epidemiology of Salmonella in poultry farms, when serial LA were implemented during the rearing cycle of broilers. For this purpose, an experimental broiler farm with 3 identical rooms was used in the study. Two rooms were assigned to the LA treatment, and the other one served as the control room. Environmental samples were taken in poultry houses after LA in 4 consecutive weeks at the end of the cycle. All samples collected were analyzed according to the standards of the International Organization for Standardization (ISO 6579:2002, Annex D). The results of this study showed that in the control and treated rooms, the percentage of positive samples for Salmonella decreased in the first 3 LA sessions (LA 1, LA 2, and LA 3). However, in the last LA session of rearing (LA 4), the percentage of positive samples increased from 8.2 to 33.2% in the control room instead the treated rooms where the positive samples decreased (P = 0.017). Thus, the aeration of the litter as litter management technique in poultry broiler production does not increase the shedding or the spread of Salmonella throughout broiler houses. In addition, it could be an effective technique to reduce the infective pressure of this bacterium in several areas of the farm or in certain moments of the rearing period with more risk of multiplication and spreading of Salmonella
Prediction of Reverse Remodeling at Cardiac MR Imaging Soon after First ST-Segment-Elevation Myocardial Infarction: Results of a Large Prospective Registry
[EN] Conclusion: Assessment of infarct size and MVO with cardiac MR imaging soon after STEMI enables one to make a decision in the prediction of reverse remodeling. (C) RSNA, 2015Supported by the Instituto de Salud Carlos III and FEDER (grant PI1400271) and the Generalitat Valenciana (grant PROMETEO/2013/007).Bodi, V.; Monmeneu, J.; Ortiz-Perez, J.; López-Lereu, M.; Bonanad, C.; Husser, O.; Minana, G.... (2016). Prediction of Reverse Remodeling at Cardiac MR Imaging Soon after First ST-Segment-Elevation Myocardial Infarction: Results of a Large Prospective Registry. Radiology. 278(1):54-63. https://doi.org/10.1148/radiol.2015142674S5463278
Chiral corrections to the Gell-Mann-Oakes-Renner relation
The next to leading order chiral corrections to the
Gell-Mann-Oakes-Renner (GMOR) relation are obtained using the pseudoscalar
correlator to five-loop order in perturbative QCD, together with new finite
energy sum rules (FESR) incorporating polynomial, Legendre type, integration
kernels. The purpose of these kernels is to suppress hadronic contributions in
the region where they are least known. This reduces considerably the systematic
uncertainties arising from the lack of direct experimental information on the
hadronic resonance spectral function. Three different methods are used to
compute the FESR contour integral in the complex energy (squared) s-plane, i.e.
Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a
fixed renormalization scale scheme. We obtain for the corrections to the GMOR
relation, , the value . This result
is substantially more accurate than previous determinations based on QCD sum
rules; it is also more reliable as it is basically free of systematic
uncertainties. It implies a light quark condensate . As a byproduct, the chiral perturbation theory (unphysical) low energy
constant is predicted to be , or .Comment: A comment about the value of the strong coupling has been added at
the end of Section 4. No change in results or conslusion
- …