152 research outputs found
Coulomb excitation of exotic nuclei at the R3B-LAND setup
Exotic Ni isotopes have been measured at the R3B-LAND setup at GSI in
Darmstadt, using Coulomb excitation in inverse kinematics at beam energies
around 500 MeV/u. As the experimental setup allows kinematically complete
measurements, the excitation energy was reconstructed using the invariant mass
method. The GDR and additional low-lying strength have been observed in 68Ni,
the latter exhausting 4.1(1.9)% of the E1 energy-weighted sum rule. Also, the
branching ratio for the non-statistical decay of the excited 68Ni nuclei was
measured and amounts to 24(4)%.Comment: 11 pages, 7 figures. Invited Talk given at the 11th International
Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA,
May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of
Physics: Conference Series (JPCS
Coulomb breakup of neutron-rich Na isotopes near the island of inversion
First results are reported on the ground state configurations of the
neutron-rich Na isotopes, obtained via Coulomb dissociation (CD)
measurements as a method of the direct probe. The invariant mass spectra of
those nuclei have been obtained through measurement of the four-momentum of all
decay products after Coulomb excitation on a target at energies of
400-430 MeV/nucleon using FRS-ALADIN-LAND setup at GSI, Darmstadt. Integrated
Coulomb-dissociation cross-sections (CD) of 89 mb and 167 mb up to
excitation energy of 10 MeV for one neutron removal from Na and
Na respectively, have been extracted. The major part of one neutron
removal, CD cross-sections of those nuclei populate core, in its' ground state.
A comparison with the direct breakup model, suggests the predominant occupation
of the valence neutron in the ground state of Na and
Na is the orbital with small contribution in the
-orbital which are coupled with ground state of the core. The ground state
configurations of these nuclei are as Na_{gs (1^+)\otimes\nu_{s,d} and
Na, respectively. The ground state spin
and parity of these nuclei, obtained from this experiment are in agreement with
earlier reported values. The spectroscopic factors for the valence neutron
occupying the and orbitals for these nuclei in the ground state have
been extracted and reported for the first time. A comparison of the
experimental findings with the shell model calculation using MCSM suggests a
lower limit of around 4.3 MeV of the sd-pf shell gap in Na.Comment: Modified version of the manuscript is accepted for publication in
Journal of Physics G, Jan., 201
Well-developed deformation in 42Si
Excited states in 38,40,42Si nuclei have been studied via in-beam gamma-ray
spectroscopy with multi-nucleon removal reactions. Intense radioactive beams of
40S and 44S provided at the new facility of the RIKEN Radioactive Isotope Beam
Factory enabled gamma-gamma coincidence measurements. A prominent gamma line
observed with an energy of 742(8) keV in 42Si confirms the 2+ state reported in
an earlier study. Among the gamma lines observed in coincidence with the 2+ ->
0+ transition, the most probable candidate for the transition from the yrast 4+
state was identified, leading to a 4+_1 energy of 2173(14) keV. The energy
ratio of 2.93(5) between the 2+_1 and 4+_1 states indicates well-developed
deformation in 42Si at N=28 and Z=14. Also for 38,40Si energy ratios with
values of 2.09(5) and 2.56(5) were obtained. Together with the ratio for 42Si,
the results show a rapid deformation development of Si isotopes from N=24 to
N=28
Coulomb dissociation of 27 P: A reaction of astrophysical interest
The ground-state decay of 26Al(0+) (T 1/2=1.05
7 106) has a shorter life-time than the Universe. The presence of this element in the Galaxy was measured via g-ray spectroscopy, showing that the nucleosynthesis of this element is an ongoing process in stars. The proton-capture reaction 26Si(p,γ) 27P competes with the production of 26Al(0+) by β-decay. Coulomb dissociation of 27P has been suggested as an indirect method to measure radiative-proton capture when the direct reaction is not feasible. Such an experiment was performed at GSI with a secondary 27P beam produced by fragmenting a 36Ar primary beam at 500 A MeV. Two main observables are preliminarily presented in this work: the reaction cross section and the relative-energy spectrum of the outgoing fragments \ua9 Copyright owned by the author(s)
Exclusive measurements of quasi-free proton scattering reactions in inverse and complete kinematics
Quasi-free scattering reactions of the type (p, 2p) were measured for the first time exclusively in complete and inverse kinematics, using a 12C beam at an energy of ~400 MeV/u as a benchmark. This new technique has been developed to study the single-particle structure of exotic nuclei in experiments with radioactive-ion beams. The outgoing pair of protons and the fragments were measured simultaneously, enabling an unambiguous identification of the reaction channels and a redundant measurement of the kinematic observables. Both valence and deeply-bound nucleon orbits are probed, including those leading to unbound states of the daughter nucleus. Exclusive (p, 2p) cross sections of 15.8(18) mb, 1.9(2) mb and 1.5(2) mb to the low-lying 0p-hole states overlapping with the ground state (3/2-) and with the bound excited states of 11B at 2.125 MeV (1/2-) and 5.02 MeV (3/2-), respectively, were determined via γ-ray spectroscopy. Particle-unstable deep-hole states, corresponding to proton removal from the 0s-orbital, were studied via the invariant-mass technique. Cross sections and momentum distributions were extracted and compared to theoretical calculations employing the eikonal formalism. The obtained results are in a good agreement with this theory and with direct-kinematics experiments. The dependence of the proton-proton scattering kinematics on the internal momentum of the struck proton and on its separation energy was investigated for the first time in inverse kinematics employing a large-acceptance measurement
Direct experimental evidence for a multiparticle-hole ground state configuration of deformed Mg-33
The first direct experimental evidence of a multiparticle-hole ground state configuration of the neutron-rich Mg-33 isotope has been obtained via intermediate energy (400 A MeV) Coulomb dissociation measurement. The major part similar to(70 +/- 13)% of the cross section is observed to populate the excited states of Mg-32 after the Coulomb breakup of Mg-33. The shapes of the differential Coulomb dissociation cross sections in coincidence with different core excited states favor that the valence neutron occupies both the s(1/2) and p(3/2) orbitals. These experimental findings suggest a significant reduction and merging of sd-pf shell gaps at N similar to 20 and 28. The ground state configuration of Mg-33 is predominantly a combination of Mg-32(3.0,3.5MeV; 2(-), 1(-)) circle times nu(s1/2), Mg-32(2.5MeV; 2(+)) circle times nu(p3/2), and Mg-32(0; 0(+)) circle times nu(p3/2). The experimentally obtained quantitative spectroscopic information for the valence neutron occupation of the s and p orbitals, coupled with different core states, is in agreement with Monte Carlo shell model (MCSM) calculation using 3 MeV as the shell gap at N = 20
Coulomb dissociation of P 27 at 500 MeV/u
The proton-capture reaction Si26(p,γ)P27 was studied via Coulomb dissociation (CD) of P27 at an incident energy of about 500 MeV/u. The three lowest-lying resonances in P27 have been populated and their resonance strengths have been measured. In addition, a nonresonant direct-capture component was clearly identified and its astrophysical S factor measured. The experimental results are compared to Monte Carlo simulations of the CD process using a semiclassical model. Our thermonuclear reaction rates show good agreement with the rates from a recent compilation. With respect to the nuclear structure of P27 we have found evidence for a negative-parity intruder state at 2.88-MeV excitation energy
- …