115 research outputs found
Advances in the surgical management of bone tumors
Chirurgia guzów kości stanowi duże wyzwanie, szczególnie gdy nowotwory są zlokalizowane w wąsko ograniczonych obszarach anatomicznych i przylegają do ważnych narządów i pęczków nerwowo-naczyniowych. Resekcja wymaga dużej dokładności w celu zapewnienia bezpieczeństwa, uzyskania ujemnych marginesów chirurgicznych i oszczędzenia, jeśli to możliwe, ważnych narządów. Celem opracowania był przegląd publikacji dotyczących postępu w leczeniu chirurgicznym guzów kości, które ukazały się w ciągu ubiegłego roku. Większość zebranych artykułów koncentrowała się na wykorzystaniu w leczeniu chirurgicznym sprzętu komputerowego. Pojawia się coraz więcej dowodów na istotną rolę trójwymiarowej nawigacji podczas resekcji guzów kości. Opracowywane są coraz nowsze materiały służące do rekonstrukcji tkanek, które wspomagają szybkie gojenie i zapobiegają powikłaniom infekcyjnym. Optymalne postępowanie powinno obejmować stworzenie dobrze opracowanego planu przedoperacyjnego opartego na wielospecjalistycznym podejściu pod nadzorem onkologa ortopedy.Bone tumor surgery is extremely challenging, particularly when tumors are located in tightly confined anatomical areas and abutting critical organs and neurovascular structures. Tumor resection requires good cutting accuracy to ensure safety, to achieve negative margins, and to preserve critical structures when possible. The purpose of this paper was to review the literature on the surgical advances for bone tumor surgery published within the last year. The majority of literature identified focused on computer-assisted surgical approaches. There is increasing evidence that 3D navigation plays an important role in the resection of bone tumors. Reconstruction materials that encourage healing and prevent infections are also in development. Optimal care includes execution of a well-developed pre-operative plan using a multidisciplinary approach led by the orthopaedic oncologist
Monomeric PcrA helicase processively unwinds plasmid lengths of DNA in the presence of the initiator protein RepD
The helicase PcrA unwinds DNA during asymmetric replication of plasmids, acting with an initiator protein, in our case RepD. Detailed kinetics of PcrA activity were measured using bulk solution and a single-molecule imaging technique to investigate the oligomeric state of the active helicase complex, its processivity and the mechanism of unwinding. By tethering either DNA or PcrA to a microscope coverslip surface, unwinding of both linear and natural circular plasmid DNA by PcrA/RepD was followed in real-time using total internal reflection fluorescence microscopy. Visualization was achieved using a fluorescent single-stranded DNA-binding protein. The single-molecule data show that PcrA, in combination with RepD, can unwind plasmid lengths of DNA in a single run, and that PcrA is active as a monomer. Although the average rate of unwinding was similar in single-molecule and bulk solution assays, the single-molecule experiments revealed a wide distribution of unwinding speeds by different molecules. The average rate of unwinding was several-fold slower than the PcrA translocation rate on single-stranded DNA, suggesting that DNA unwinding may proceed via a partially passive mechanism. However, the fastest dsDNA unwinding rates measured in the single-molecule unwinding assays approached the PcrA translocation speed measured on ssDNA
Modular Robotic Vehicle
A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles
Hypofractionated, 3-Week, Preoperative Radiotherapy for Patients With Soft Tissue Sarcomas (Hyport-Sts): A Single-Centre, Open-Label, Single-Arm, Phase 2 Trial
BACKGROUND: The standard preoperative radiotherapy regimen of 50 Gy delivered in 25 fractions for 5 weeks for soft tissue sarcomas results in excellent local control, with major wound complications occurring in approximately 35% of patients. We aimed to investigate the safety of a moderately hypofractionated, shorter regimen of radiotherapy, which could be more convenient for patients.
METHODS: This single-centre, open-label, single-arm, phase 2 trial (HYPORT-STS) was done at a single tertiary cancer care centre (MD Anderson Cancer Center, Houston, TX, USA). We administered preoperative radiotherapy to a dose of 42·75 Gy in 15 fractions of 2·85 Gy/day for 3 weeks (five fractions per week) to adults (aged ≥18 years) with non-metastatic soft tissue sarcomas of the extremities or superficial trunk and an Eastern Cooperative Oncology Group performance status of 0-3. The primary endpoint was a major wound complication occurring within 120 days of surgery. Major wound complications were defined as those requiring a secondary operation, or operations, under general or regional anaesthesia for wound treatment; readmission to the hospital for wound care; invasive procedures for wound care; deep wound packing to an area of wound measuring at least 2 cm in length; prolonged dressing changes; repeat surgery for revision of a split thickness skin graft; or wet dressings for longer than 4 weeks. We analysed our primary outcome and safety in all patients who enrolled. We monitored safety using a Bayesian, one-arm, time-to-event stopping rule simulator comparing the rate of major wound complications at 120 days post-surgery among study participants with the historical rate of 35%. This trial is registered with ClinicalTrials.gov, NCT03819985, recruitment is complete, and follow-up continues.
FINDINGS: Between Dec 18, 2018, and Jan 6, 2021, we assessed 157 patients for eligibility, of whom 120 were enrolled and received hypofractionated preoperative radiotherapy. At no time did the stopping rule computation indicate that the trial should be stopped early for lack of safety. Median postoperative follow-up was 24 months (IQR 17-30). Of 120 patients, 37 (31%, 95% CI 24-40) developed a major wound complication at a median time of 37 days (IQR 25-59) after surgery. No patient had acute radiation toxicity (during radiotherapy or within 4 weeks of the radiotherapy end date) of grade 3 or worse (Common Terminology Criteria for Adverse Events [CTCAE] version 4.0) or an on-treatment serious adverse event. Four (3%) of 115 patients had late radiation toxicity (≥6 months post-surgery) of at least grade 3 (CTCAE or Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer Late Radiation Morbidity Scoring Scheme): femur fractures (n=2), lymphoedema (n=1), and skin ulceration (n=1). There were no treatment-related deaths.
INTERPRETATION: Moderately hypofractionated preoperative radiotherapy delivered to patients with soft tissue sarcomas was safe and could therefore be a more convenient alternative to conventionally fractionated radiotherapy. Patients can be counselled about these results and potentially offered this regimen, particularly if it facilitates care at a sarcoma specialty centre. Results on long-term oncological, late toxicity, and functional outcomes are awaited.
FUNDING: The National Cancer Institute
Dynamics of heteropolymers in dilute solution: effective equation of motion and relaxation spectrum
The dynamics of a heteropolymer chain in solution is studied in the limit of
long chain length. Using functional integral representation we derive an
effective equation of motion, in which the heterogeneity of the chain manifests
itself as a time-dependent excluded volume effect. At the mean field level, the
heteropolymer chain is therefore dynamically equivalent to a homopolymer chain
with both time-independent and time-dependent excluded volume effects. The
perturbed relaxation spectrum is also calculated. We find that heterogeneity
also renormalizes the relaxation spectrum. However, we find, to the lowest
order in heterogeneity, that the relaxation spectrum does not exhibit any
dynamic freezing, at the point when static (equilibrium) ``freezing''
transition occurs in heteropolymer. Namely, the breaking of
fluctuation-dissipation theorem (FDT) proposed for spin glass dynamics does not
have dynamic effect in heteropolymer, as far as relaxation spectrum is
concerned. The implication of this result is discussed
Visualizing helicases unwinding DNA at the single molecule level
DNA helicases are motor proteins that catalyze the unwinding of double-stranded DNA into single-stranded DNA using the free energy from ATP hydrolysis. Single molecule approaches enable us to address detailed mechanistic questions about how such enzymes move processively along DNA. Here, an optical method has been developed to follow the unwinding of multiple DNA molecules simultaneously in real time. This was achieved by measuring the accumulation of fluorescent single-stranded DNA-binding protein on the single-stranded DNA product of the helicase, using total internal reflection fluorescence microscopy. By immobilizing either the DNA or helicase, localized increase in fluorescence provides information about the rate of unwinding and the processivity of individual enzymes. In addition, it reveals details of the unwinding process, such as pauses and bursts of activity. The generic and versatile nature of the assay makes it applicable to a variety of DNA helicases and DNA templates. The method is an important addition to the single-molecule toolbox available for studying DNA processing enzymes
A randomised feasibility study of EPA and Cox-2 inhibitor (Celebrex) versus EPA, Cox-2 inhibitor (Celebrex), Resistance Training followed by ingestion of essential amino acids high in leucine in NSCLC cachectic patients - ACCeRT Study
<p>Abstract</p> <p>Background</p> <p>Cancer cachexia is a syndrome of progressive weight loss. Non-small cell lung cancer patients experience a high incidence of cachexia of 61%. Research into methods to combat cancer cachexia in various tumour sites has recently progressed to the combination of agents.</p> <p>The combination of the anti-cachectic agent Eicosapentaenoic acid (EPA) and the cyclo-oxygenase-2 (COX-2) inhibitor celecoxib has been tested in a small study with some benefit. The use of progressive resistance training (PRT) followed by the oral ingestion of essential amino acids (EAA), have shown to be anabolic on skeletal muscle and acceptable in older adults and other cancer groups.</p> <p>The aim of this feasibility study is to evaluate whether a multi-targeted approach encompassing a resistance training and nutritional supplementation element is acceptable for lung cancer patients experiencing cancer cachexia.</p> <p>Methods/Design</p> <p>Auckland's Cancer Cachexia evaluating Resistance Training (ACCeRT) is an open label, prospective, randomised controlled feasibility study with two parallel arms. All patients will be treated with EPA and the COX-2 inhibitor celecoxib on an outpatient basis at the study site. In the experimental group patients will participate in PRT twice a week, followed by the ingestion of essential amino acids high in leucine. A total of 21 patients are planned to be enrolled. Patients will be randomised using 1:2 ratio with 7 patients enrolled into the control arm, and 14 patients into the treatment arm. The primary endpoint is the acceptability of the above multi-targeted approach, determined by an acceptability questionnaire.</p> <p>Discussion</p> <p>To our knowledge ACCeRT offers for the first time the opportunity to investigate the effect of stimulating the anabolic skeletal muscle pathway with the use of PRT along with EAA alongside the combination of EPA and celecoxib in this population.</p> <p>Trial registration</p> <p>Netherlands Trial Register (NTR): <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2040">ACTRN12611000870954</a></p
The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies
The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80–300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3-km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper, the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised
MLSys: The New Frontier of Machine Learning Systems
Machine learning (ML) techniques are enjoying rapidly increasing adoption. However, designing and implementing the systems that support ML models in real-world deployments remains a significant obstacle, in large part due to the radically different development and deployment profile of modern ML methods, and the range of practical concerns that come with broader adoption. We propose to foster a new systems machine learning research community at the intersection of the traditional systems and ML communities, focused on topics such as hardware systems for ML, software systems for ML, and ML optimized for metrics beyond predictive accuracy. To do this, we describe a new conference, MLSys, that explicitly targets research at the intersection of systems and machine learning with a program committee split evenly between experts in systems and ML, and an explicit focus on topics at the intersection of the two
Collagen density promotes mammary tumor initiation and progression
<p>Abstract</p> <p>Background</p> <p>Mammographically dense breast tissue is one of the greatest risk factors for developing breast carcinoma. Despite the strong clinical correlation, breast density has not been causally linked to tumorigenesis, largely because no animal model has existed for studying breast tissue density. Importantly, regions of high breast density are associated with increased stromal collagen. Thus, the influence of the extracellular matrix on breast carcinoma development and the underlying molecular mechanisms are not understood.</p> <p>Methods</p> <p>To study the effects of collagen density on mammary tumor formation and progression, we utilized a bi-transgenic tumor model with increased stromal collagen in mouse mammary tissue. Imaging of the tumors and tumor-stromal interface in live tumor tissue was performed with multiphoton laser-scanning microscopy to generate multiphoton excitation and spectrally resolved fluorescent lifetimes of endogenous fluorophores. Second harmonic generation was utilized to image stromal collagen.</p> <p>Results</p> <p>Herein we demonstrate that increased stromal collagen in mouse mammary tissue significantly increases tumor formation approximately three-fold (<it>p </it>< 0.00001) and results in a significantly more invasive phenotype with approximately three times more lung metastasis (<it>p </it>< 0.05). Furthermore, the increased invasive phenotype of tumor cells that arose within collagen-dense mammary tissues remains after tumor explants are cultured within reconstituted three-dimensional collagen gels. To better understand this behavior we imaged live tumors using nonlinear optical imaging approaches to demonstrate that local invasion is facilitated by stromal collagen re-organization and that this behavior is significantly increased in collagen-dense tissues. In addition, using multiphoton fluorescence and spectral lifetime imaging we identify a metabolic signature for flavin adenine dinucleotide, with increased fluorescent intensity and lifetime, in invading metastatic cells.</p> <p>Conclusion</p> <p>This study provides the first data causally linking increased stromal collagen to mammary tumor formation and metastasis, and demonstrates that fundamental differences arise and persist in epithelial tumor cells that progressed within collagen-dense microenvironments. Furthermore, the imaging techniques and signature identified in this work may provide useful diagnostic tools to rapidly assess fresh tissue biopsies.</p
- …