131 research outputs found

    A two-state model for helicase translocation and unwinding of nucleic acids

    Get PDF
    Helicases are molecular motors that unwind double-stranded nucleic acids (dsNA), such as DNA and RNA). Typically a helicase translocates along one of the NA single strands while unwinding and uses adenosine triphosphate (ATP) hydrolysis as an energy source. Here we model of a helicase motor that can switch between two states, which could represent two different points in the ATP hydrolysis cycle. Our model is an extension of the earlier Betterton-J\"ulicher model of helicases to incorporate switching between two states. The main predictions of the model are the speed of unwinding of the dsNA and fluctuations around the average unwinding velocity. Motivated by a recent claim that the NS3 helicase of Hepatitis C virus follows a flashing ratchet mechanism, we have compared the experimental results for the NS3 helicase with a special limit of our model which corresponds to the flashing ratchet scenario. Our model accounts for one key feature of the experimental data on NS3 helicase. However, contradictory observations in experiments carried out under different conditions limit the ability to compare the model to experiments.Comment: minor modification

    Velocity and processivity of helicase unwinding of double-stranded nucleic acids

    Full text link
    Helicases are molecular motors which unwind double-stranded nucleic acids (dsNA) in cells. Many helicases move with directional bias on single-stranded (ss) nucleic acids, and couple their directional translocation to strand separation. A model of the coupling between translocation and unwinding uses an interaction potential to represent passive and active helicase mechanisms. A passive helicase must wait for thermal fluctuations to open dsNA base pairs before it can advance and inhibit NA closing. An active helicase directly destabilizes dsNA base pairs, accelerating the opening rate. Here we extend this model to include helicase unbinding from the nucleic-acid strand. The helicase processivity depends on the form of the interaction potential. A passive helicase has a mean attachment time which does not change between ss translocation and ds unwinding, while an active helicase in general shows a decrease in attachment time during unwinding relative to ss translocation. In addition, we describe how helicase unwinding velocity and processivity vary if the base-pair binding free energy is changed.Comment: To appear in special issue on molecular motors, Journal of Physics - Condensed Matte

    Controlled Irradiative Formation of Penitentes

    Full text link
    Spike-shaped structures are produced by light-driven ablation in very different contexts. Penitentes 1-4 m high are common on Andean glaciers, where their formation changes glacier dynamics and hydrology. Laser ablation can produce cones 10-100 microns high with a variety of proposed applications in materials science. We report the first laboratory generation of centimeter-scale snow and ice penitentes. Systematically varying conditions allows identification of the essential parameters controlling the formation of ablation structures. We demonstrate that penitente initiation and coarsening requires cold temperatures, so that ablation leads to sublimation rather than melting. Once penitentes have formed, further growth of height can occur by melting. The penitentes intially appear as small structures (3 mm high) and grow by coarsening to 1-5 cm high. Our results are an important step towards understanding and controlling ablation morphologies.Comment: Accepted for publication in Physical Review Letter

    Opening of DNA double strands by helicases. Active versus passive opening

    Get PDF
    Helicase opening of double-stranded nucleic acids may be "active" (the helicase directly destabilizes the dsNA to promote opening) or "passive" (the helicase binds ssNA available due to a thermal fluctuation which opens part of the dsNA). We describe helicase opening of dsNA, based on helicases which bind single NA strands and move towards the double-stranded region, using a discrete ``hopping'' model. The interaction between the helicase and the junction where the double strand opens is characterized by an interaction potential. The form of the potential determines whether the opening is active or passive. We calculate the rate of passive opening for the helicase PcrA, and show that the rate increases when the opening is active. Finally, we examine how to choose the interaction potential to optimize the rate of strand separation. One important result is our finding that active opening can increase the unwinding rate by 7 fold compared to passive opening.Comment: 13 pages, 3 figure

    Formation of Structure in Snowfields: Penitentes, Suncups, and Dirt Cones

    Get PDF
    Penitentes and suncups are structures formed as snow melts, typically high in the mountains. When the snow is dirty, dirt cones and other structures can form instead. Building on previous field observations and experiments, this work presents a theory of ablation morphologies, and the role of surface dirt in determining the structures formed. The glaciological literature indicates that sunlight, heating from air, and dirt all play a role in the formation of structure on an ablating snow surface. The present work formulates a mathematical model for the formation of ablation morphologies as a function of measurable parameters. The dependence of ablation morphologies on weather conditions and initial dirt thickness are studied, focusing on the initial growth of perturbations away from a flat surface. We derive a single-parameter expression for the melting rate as a function of dirt thickness, which agrees well with a set of measurements by Driedger. An interesting result is the prediction of a dirt-induced travelling instability for a range of parameters.Comment: 28 pages, 13 figure

    Formaldehyde, glyoxal, and methylglyoxal in air and cloudwater at a rural mountain site in central Virginia

    Get PDF
    As part of the Shenandoah Cloud and Photochemistry Experiment (SCAPE), we measured formaldehyde (HCHO), glyoxal (CHOCHO), and methylglyoxal (CH3C(O)CHO) concentrations in air and cloudwater at Pinnacles (elevation 1037 m) in Shenandoah National Park during September 1990. Mean gas‐phase concentrations of HCHO and CHOCHO were 980 and 44 pptv, respectively. The concentration of CH3C(O)CHO rarely exceeded the detection limit of 50 pptv. Mean cloudwater concentrations of HCHO and CHOCHO were 9 and 2 μM, respectively; the mean CH3C(O)CHO concentration was below its detection limit of 0.3 μM. The maximum carbonyl concentrations were observed during stagnation events with high O3, peroxides, and CO. Outside of these events the carbonyls did not correlate significantly with O3, CO, or NOy. Carbonyl concentrations and concentration ratios were consistent with a major source for the carbonyls from isoprene oxidation. Oxidation of CH4 supplies a significant background of HCHO. The carbonyl concentrations were indistinguishable in two size fractions of cloudwater having a cut at d=18 μm. Gas‐ and aqueous‐phase concentrations of HCHO from samples collected during a nighttime cloud event agree with thermodynamic equilibria within a factor of 2. Samples collected during a daytime cloud event show HCHO supersaturation by up to a factor of 4. Positive artifacts in the cloudwater samples due to hydrolysis of hydroxymethylhydroperoxide (HOCH2OOH) could perhaps account for this discrepancy

    Ice-rich (periglacial) vs icy (glacial) depressions in the Argyre region, Mars: a proposed cold-climate dichotomy of landforms

    Get PDF
    On Mars, so-called “scalloped depressions” are widely observed in Utopia Planitia (UP) and Malea Planum (MP). Typically, they are rimless, metres- to decametres-deep, incised sharply, tiered inwardly, polygonised and sometimes pitted. The depressions seemingly incise terrain that is icy and possibly thermokarstic, i.e. produced by the thermal destabilisation of the icy terrain. Agewise, the depressions are thought to be relatively youthful, originating in the Late Amazonian Epoch.Here, we report the presence of similar depressions in the Argyre region (AR) (30–60° S; 290–355° E). More importantly, we separate and differentiate these landforms into two groups: (ice-rich) periglacial depressions (Type-1); and, (icy) glacial depressions (Type-2a-c). This differentiation is presented to the Mars community for the first time.Based on a suite of morphological and geological characteristics synonymous with ice-complexes in the Lena Peninsula (eastern Russia) and the Tuktoyaktuk Coastlands (Northwest Territories, Canada), we propose that the Type-1 depressions are ice-rich periglacial basins that have undergone volatile depletion largely by sublimation and as the result of thermal destabilisation. In keeping with the terms and associated definitions derived of terrestrial periglacial-geomorphology, ice-rich refers to permanently frozen-ground in which ice lenses or segregation ice (collectively referenced as excess ice) have formed.We suggest that the depressions are the product of a multi-step, cold-climate geochronology:(1) Atmospheric precipitation and surface accumulation of an icy mantle during recent high obliquities.(2) Regional or local triple-point conditions and thaw/evaporation of the mantle, either by exogenic forcing, i.e. obliquity-driven rises of aerial and sub-aerial temperatures, or endogenic forcing, i.e. along Argyre impact-related basement structures.(3) Meltwater migration into the regolith, at least to the full depth of the depressions.(4) Freeze-thaw cycling and the formation of excess ice.(5) Sublimation of the excess ice and depression formation as high obliquity dissipates and near-surface ice becomes unstable.The Type-2 depressions exhibit characteristics suggestive of (supra-glacial) dead-ice basins and snow/ice suncups observed in high-alpine landscapes on Earth, e.g. the Swiss Alps and the Himalayas. Like the Type-1 depressions, the Type-2 depressions could be the work of sublimation; however, the latter differ from the former in that they seem to develop within a glacial-like icy mantle that blankets the surface rather than within an ice-rich and periglacially-revised regolith at/near the surface.Interestingly, the Type-2 depressions overlie the Type-1 depressions at some locations. If the periglacial/glacial morphological and stratigraphical dichotomy of depressions is valid, then this points to recent glaciation at some locations within the AR being precursed by at least one episode of periglaciation. This also suggests that periglaciation has a deeper history in the region than has been thought hitherto. Moreover, if the hypothesised differences amongst the Argyre-based depressions are mirrored in Utopia Planitia and Malea Planum, then perhaps this periglacial-glacial dichotomy and its associated geochronology are as relevant to understanding late period landscape-evolution in these two regions as it is in the AR

    Reliable shop floor bottleneck detection for flow lines through process and inventory observations: the bottleneck walk

    Get PDF
    Bottleneck detection in manufacturing is the key to improving production efficiency and stability in order to improve capacity. Yet, common bottleneck detection methods in industry and academia lack either accuracy or practicability, or both, for dynamic systems. The new methodology is conducted by the observation of processes and inventories. Blocked processes and full inventories indicate a downstream bottleneck. Starved processes and empty inventories indicate an upstream bottleneck. Through subsequent observations of multiple process states and inventory levels within a system, it is possible to determine the direction of the bottleneck at the given time and hence to find the momentary bottleneck in the system. The shifting of bottlenecks can be observed directly. Work sampling techniques can be used to obtain a long-term picture of the dynamically shifting bottleneck. The new methodology does not require any calculations, statistics, or time measurements. Hence, the method is suited for practical use by shop floor supervisors and clerks. The direct observation of the bottleneck also gives additional information about the underlying causes of the bottlenecks, simplifying the improvement of the system capacity. Extensive field testing of the method received positive feedback not only from management but also from shop floor operators. The method is already in use at the Robert Bosch GmbH, where it is known as the bottleneck walk
    corecore