Helicases are molecular motors that unwind double-stranded nucleic acids
(dsNA), such as DNA and RNA). Typically a helicase translocates along one of
the NA single strands while unwinding and uses adenosine triphosphate (ATP)
hydrolysis as an energy source. Here we model of a helicase motor that can
switch between two states, which could represent two different points in the
ATP hydrolysis cycle. Our model is an extension of the earlier
Betterton-J\"ulicher model of helicases to incorporate switching between two
states. The main predictions of the model are the speed of unwinding of the
dsNA and fluctuations around the average unwinding velocity. Motivated by a
recent claim that the NS3 helicase of Hepatitis C virus follows a flashing
ratchet mechanism, we have compared the experimental results for the NS3
helicase with a special limit of our model which corresponds to the flashing
ratchet scenario. Our model accounts for one key feature of the experimental
data on NS3 helicase. However, contradictory observations in experiments
carried out under different conditions limit the ability to compare the model
to experiments.Comment: minor modification