6 research outputs found

    Hotspots of biogeochemical activity linked to aridity and plant traits across global drylands

    Get PDF
    14 páginas.- 4 figuras.- 67 referencias.- The online version contains supplementary material available at https://doi.org/10.1038/s41477-024-01670-7Perennial plants create productive and biodiverse hotspots, known as fertile islands, beneath their canopies. These hotspots largely determine the structure and functioning of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands under conditions of contrasting grazing by livestock, the most prevalent land use in drylands, remain virtually unknown. Here we evaluated the relative importance of grazing pressure and herbivore type, climate and plant functional traits on 24 soil physical and chemical attributes that represent proxies of key ecosystem services related to decomposition, soil fertility, and soil and water conservation. To do this, we conducted a standardized global survey of 288 plots at 88 sites in 25 countries worldwide. We show that aridity and plant traits are the major factors associated with the magnitude of plant effects on fertile islands in grazed drylands worldwide. Grazing pressure had little influence on the capacity of plants to support fertile islands. Taller and wider shrubs and grasses supported stronger island effects. Stable and functional soils tended to be linked to species-rich sites with taller plants. Together, our findings dispel the notion that grazing pressure or herbivore type are linked to the formation or intensification of fertile islands in drylands. Rather, our study suggests that changes in aridity, and processes that alter island identity and therefore plant traits, will have marked effects on how perennial plants support and maintain the functioning of drylands in a more arid and grazed world.This research was supported by the European Research Council (ERC grant 647038 (BIODESERT) awarded to F.T.M.) and Generalitat Valenciana (CIDEGENT/2018/041). D.J.E. was supported by the Hermon Slade Foundation (HSF21040). J. Ding was supported by the National Natural Science Foundation of China Project (41991232) and the Fundamental Research Funds for the Central Universities of China. M.D.-B. acknowledges support from TED2021-130908B-C41/AEI/10.13039/501100011033/Unión Europea Next Generation EU/PRTR and the Spanish Ministry of Science and Innovation for the I + D + i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. O.S. was supported by US National Science Foundation (Grants DEB 1754106, 20-25166), and Y.L.B.-P. by a Marie Sklodowska-Curie Actions Individual Fellowship (MSCA-1018 IF) within the European Program Horizon 2020 (DRYFUN Project 656035). K.G. and N.B. acknowledge support from the German Federal Ministry of Education and Research (BMBF) SPACES projects OPTIMASS (FKZ: 01LL1302A) and ORYCS (FKZ: FKZ01LL1804A). B.B. was supported by the Taylor Family-Asia Foundation Endowed Chair in Ecology and Conservation Biology, and M. Bowker by funding from the School of Forestry, Northern Arizona University. C.B. acknowledges funding from the National Natural Science Foundation of China (41971131). D.B. acknowledges support from the Hungarian Research, Development and Innovation Office (NKFI KKP 144096), and A. Fajardo support from ANID PIA/BASAL FB 210006 and the Millennium Science Initiative Program NCN2021-050. M.F. and H.E. received funding from Ferdowsi University of Mashhad (grant 39843). A.N. and M.K. acknowledge support from FCT (CEECIND/02453/2018/CP1534/CT0001, SFRH/BD/130274/2017, PTDC/ASP-SIL/7743/2020, UIDB/00329/2020), EEA (10/CALL#5), AdaptForGrazing (PRR-C05-i03-I-000035) and LTsER Montado platform (LTER_EU_PT_001) grants. O.V. acknowledges support from the Hungarian Research, Development and Innovation Office (NKFI KKP 144096). L.W. was supported by the US National Science Foundation (EAR 1554894). Y.Z. and X.Z. were supported by the National Natural Science Foundation of China (U2003214). H.S. is supported by a María Zambrano fellowship funded by the Ministry of Universities and European Union-Next Generation plan. The use of any trade, firm or product names does not imply endorsement by any agency, institution or government. Finally, we thank the many people who assisted with field work and the landowners, corporations and national bodies that allowed us access to their land.Peer reviewe

    Analysis of the requirements for the development of a physical evaluation app based on the leger test

    No full text
    El objetivo de esta investigación es diseñar una metodología para obtener datos precisos en pruebas de campo que permitan la programación de una aplicación móvil para la evaluación física de estudiantes de entre 12 y 14 años de edad. Para lograr esto, se han analizado diversas técnicas y variables de estudio adaptadas al test de Leger, con el fin de medir la resistencia, el Vo2 Max y la frecuencia cardíaca de manera confiable y efectiva. La población de estudio consiste en niñas y niños, quienes realizan tres pruebas cada 72 horas, en carriles habilitados con vallas, slalom y longitud libre. Los resultados obtenidos permiten comprobar que la metodología es efectiva para mejorar el rendimiento físico de los estudiantes, observándose una mejora significativa en la frecuencia cardíaca a lo largo de las distintas secciones de trabajo. Los datos obtenidos en tiempo real y la retroalimentación que recibe el participante al finalizar cada prueba, permiten que la aplicación móvil sea una herramienta útil para la masificación de la práctica de la actividad física en la población escolar.The objective of this research is to design a methodology to obtain accurate data in field tests that allow the programming of a mobile application for physical evaluation of students between the ages of 12 and 14. To achieve this, various techniques have been studied. and study variables adapted to the Leger test, in order to measure resistance, Vo2 Max and heart rate reliably and effectively. The study population consists of girls and children, who carry out three tests every 72 hours, in lanes set up with fences, slalom and free length. The results obtained allow us to verify that the methodology is effective for improve the physical performance of students, observing a significant improvement in the heart rate throughout the different sections of work. The data obtained in time and the feedback that the participant receives at the end of each test, allow the mobile application is a useful tool for the massification of the practice of physical activity in the school population

    Hotspots of biogeochemical activity linked to aridity and plant traits across global drylands

    No full text
    Perennial plants create productive and biodiverse hotspots, known as fertile islands, beneath their canopies. These hotspots largely determine the structure and functioning of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands under conditions of contrasting grazing by livestock, the most prevalent land use in drylands, remain virtually unknown. Here we evaluated the relative importance of grazing pressure and herbivore type, climate and plant functional traits on 24 soil physical and chemical attributes that represent proxies of key ecosystem services related to decomposition, soil fertility, and soil and water conservation. To do this, we conducted a standardized global survey of 288 plots at 88 sites in 25 countries worldwide. We show that aridity and plant traits are the major factors associated with the magnitude of plant effects on fertile islands in grazed drylands worldwide. Grazing pressure had little influence on the capacity of plants to support fertile islands. Taller and wider shrubs and grasses supported stronger island effects. Stable and functional soils tended to be linked to species-rich sites with taller plants. Together, our findings dispel the notion that grazing pressure or herbivore type are linked to the formation or intensification of fertile islands in drylands. Rather, our study suggests that changes in aridity, and processes that alter island identity and therefore plant traits, will have marked effects on how perennial plants support and maintain the functioning of drylands in a more arid and grazed world.This research was supported by the European Research Council (ERC grant 647038 (BIODESERT) awarded to F.T.M.) and Generalitat Valenciana (CIDEGENT/2018/041). D.J.E. was supported by the Hermon Slade Foundation (HSF21040). J. Ding was supported by the National Natural Science Foundation of China Project (41991232) and the Fundamental Research Funds for the Central Universities of China. M.D.-B. acknowledges support from TED2021-130908B-C41/AEI/10.13039/501100011033/Unión Europea Next Generation EU/PRTR and the Spanish Ministry of Science and Innovation for the I + D + i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. O.S. was supported by US National Science Foundation (Grants DEB 1754106, 20-25166), and Y.L.B.-P. by a Marie Sklodowska-Curie Actions Individual Fellowship (MSCA-1018 IF) within the European Program Horizon 2020 (DRYFUN Project 656035). K.G. and N.B. acknowledge support from the German Federal Ministry of Education and Research (BMBF) SPACES projects OPTIMASS (FKZ: 01LL1302A) and ORYCS (FKZ: FKZ01LL1804A). B.B. was supported by the Taylor Family-Asia Foundation Endowed Chair in Ecology and Conservation Biology, and M. Bowker by funding from the School of Forestry, Northern Arizona University. C.B. acknowledges funding from the National Natural Science Foundation of China (41971131). D.B. acknowledges support from the Hungarian Research, Development and Innovation Office (NKFI KKP 144096), and A. Fajardo support from ANID PIA/BASAL FB 210006 and the Millennium Science Initiative Program NCN2021-050. M.F. and H.E. received funding from Ferdowsi University of Mashhad (grant 39843). A.N. and M.K. acknowledge support from FCT (CEECIND/02453/2018/CP1534/CT0001, SFRH/BD/130274/2017, PTDC/ASP-SIL/7743/2020, UIDB/00329/2020), EEA (10/CALL#5), AdaptForGrazing (PRR-C05-i03-I-000035) and LTsER Montado platform (LTER_EU_PT_001) grants. O.V. acknowledges support from the Hungarian Research, Development and Innovation Office (NKFI KKP 144096). L.W. was supported by the US National Science Foundation (EAR 1554894). Y.Z. and X.Z. were supported by the National Natural Science Foundation of China (U2003214). H.S. is supported by a María Zambrano fellowship funded by the Ministry of Universities and European Union-Next Generation plan

    Hotspots of biogeochemical activity linked to aridity and plant traits across global drylands

    No full text
    Perennial plants create productive and biodiverse hotspots, known as fertile islands, beneath their canopies. These hotspots largely determine the structure and functioning of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands under conditions of contrasting grazing by livestock, the most prevalent land use in drylands, remain virtually unknown. Here we evaluated the relative importance of grazing pressure and herbivore type, climate and plant functional traits on 24 soil physical and chemical attributes that represent proxies of key ecosystem services related to decomposition, soil fertility, and soil and water conservation. To do this, we conducted a standardized global survey of 288 plots at 88 sites in 25 countries worldwide. We show that aridity and plant traits are the major factors associated with the magnitude of plant effects on fertile islands in grazed drylands worldwide. Grazing pressure had little influence on the capacity of plants to support fertile islands. Taller and wider shrubs and grasses supported stronger island effects. Stable and functional soils tended to be linked to species-rich sites with taller plants. Together, our findings dispel the notion that grazing pressure or herbivore type are linked to the formation or intensification of fertile islands in drylands. Rather, our study suggests that changes in aridity, and processes that alter island identity and therefore plant traits, will have marked effects on how perennial plants support and maintain the functioning of drylands in a more arid and grazed world.info:eu-repo/semantics/submittedVersio

    Grazing and ecosystem service delivery in global drylands

    Get PDF
    Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure

    Data and R code from "Grazing and ecosystem service delivery in global drylands"

    No full text
    There are two zip files with the data and R scripts used in the article "Grazing and ecosystem service delivery in global drylands". The file "Main_Data_code.zip" contains the data and R code used in the main analyses of the paper. These data also include the location and major environmental characteristics of the plots surveyed. The file "Livestock_data_code.zip" contains the data and R code used in the characterization and validation of grazing pressure levels (see Methods). Readme and metadata files including a description of the files, variables and units are provided. All the methodological details can be found in the article. Additional authors from the BIODESERT consortium not included in the author list (we reached the maximum number of authors allowed by figshare) include:  Víctor Rolo, Juan G. Rubalcaba, Jan C. Ruppert, Ayman Salah, Max A. Schuchardt, Sedona Spann, Ilan Stavi, Colton R. A.Stephens, Anthony M. Swemmer, Alberto L. Teixido, Andrew D. Thomas, Heather L. Throop, Katja Tielbörger, Samantha Travers, James Val, Orsolya Valkó, Liesbeth van den Brink, Sergio Velasco Ayuso, Frederike Velbert, Wanyoike Wamiti, Deli Wang, Lixin Wang, Glenda M. Wardle, Laura Yahdjian, Eli Zaady, Yuanming Zhang and Xiaobing Zhou </p
    corecore