19 research outputs found

    Laker Lifelong Learners

    Get PDF

    Mouth Rinsing With Carbohydrate Solutions at the Postprandial State Fail to Improve Performance During Simulated Cycling Time Trials.

    Get PDF
    Mouth-rinsing with carbohydrate solutions during cycling time trials results in performance enhancements, however the majority of studies have utilised ∼6% carbohydrate solutions. Therefore, the purpose of this study was to compare the effectiveness of mouth-rinsing with 4%, 6%, and 8% carbohydrate (CHO) solutions on 1-h simulated cycling time trial performance. On four occasions, seven trained male cyclists completed at the postprandial period, a set amount of work as fast as possible in a randomised, counterbalanced order. The subjects mouth rinsed for 5-s, upon completion of each 12.5% of the trial, with 25 mL of a non-CHO placebo, 4%, 6%, and 8% CHO solutions. No additional fluids were consumed during the time trial. Heart rate (HR), ratings of perceived exertion (RPE), thirst (TH) and subjective feelings (SF) were recorded after each rinse. Further, blood samples were drawn every 25% of the trial to measure blood glucose (BG) and blood lactate (BG) concentrations, whilst whole body carbohydrate oxidation was monitored continuously. Time to completion was not significant between conditions with the placebo, 4%, 6%, and 8% conditions completing the trials in 62.0 ± 3.0, 62.8 ± 4.0, 63.4 ± 3.4, and 63 ±4.0 minutes respectively. There were no significant differences between conditions in any of the variables mentioned above however significant time effects were observed for HR, RPE, TH, and SF. Post-hoc analysis showed that TH and SF of subjects in the CHO conditions but not in the placebo were significantly increased by completion of the time trial. In conclusion, mouth-rinsing with CHO solutions did not impact 1-h cycling performance in the postprandial period and in the absence of fluid intake. Our findings suggest that there is scope for further research to explore the activation regions of the brain and whether they are receptive to CHO dose, before specific recommendations for athletic populations are established. Consequently mouth-rinsing as a practical strategy for coaches and athletes is questionable under specific conditions and should be carefully considered before its inclusion. The emphasis should be focused on appropriate dietary and fluid strategies during training and competition

    Data from: The role of cuticular hydrocarbons in mate recognition in Drosophila suzukii

    No full text
    Cuticular hydrocarbons (CHCs) play a central role in the chemical communication of many insects. In Drosophila suzukii, an economically important pest insect, very little is known about chemical communication and the possible role of CHCs. In this study, we identified 60 CHCs of Drosophila suzukii and studied their changes in function of age (maturation), sex and interactions with the opposite sex. We demonstrate that age (maturation) is the key factor driving changes in the CHC profiles. We then test the effect on courtship behaviour and mating of six CHCs, five of which were positively associated with maturation and one negatively. The results of these experiments demonstrate that four of the major CHC peaks with a chain length of 23 carbons, namely 9-tricosene (9-C23:1), 7-tricosene (7-C23:1), 5-tricosene (5-C23:1) and tricosane (n-C23), negatively regulated courtship and mating, even though all these compounds were characteristic for sexually mature flies. We then go on to show that this effect on courtship and mating is likely due to the disruption of the natural ratios in which these hydrocarbons occur in Drosophila suzukii. Overall, these results provide key insights into the cuticular hydrocarbon signals that play a role in D. suzukii mate recognition

    Code for bioassay analysis

    No full text
    Code written in R to analyze the bioassays to test the impact of CHCs on behavior of Drosophila suzukii

    Activation of Drosophila melanogaster TRPA1 Isoforms by Citronellal and Menthol

    No full text
    Background: The transient receptor potential ankyrin 1 (TRPA1) cation channels function as broadly-tuned sensors of noxious chemicals in many species. Recent studies identified four functional TRPA1 isoforms in Drosophila melanogaster (dTRPA1(A) to (D)), but their responses to non-electrophilic chemicals are yet to be fully characterized. Methods: We determined the behavioral responses of adult flies to the mammalian TRPA1 non-electrophilic activators citronellal and menthol, and characterized the effects of these compounds on all four dTRPA1 channel isoforms using intracellular Ca2+ imaging and whole-cell patch-clamp recordings. Results: Wild type flies avoided citronellal and menthol in an olfactory test and this behavior was reduced in dTrpA1 mutant flies. Both compounds activate all dTRPA1 isoforms in the heterologous expression system HEK293T, with the following sensitivity series: dTRPA1(C) = dTRPA1(D) > dTRPA1(A) ≫ dTRPA1(B) for citronellal and dTRPA1(A) > dTRPA1(D) > dTRPA1(C) > dTRPA1(B) for menthol. Conclusions: dTrpA1 was required for the normal avoidance of Drosophila melanogaster towards citronellal and menthol. All dTRPA1 isoforms are activated by both compounds, but the dTRPA1(B) is consistently the least sensitive. We discuss how these findings may guide further studies on the physiological roles and the structural bases of chemical sensitivity of TRPA1 channels

    Hearing regulates Drosophila aggression

    No full text
    Aggression is a universal social behavior important for the acquisition of food, mates, territory, and social status. Aggression in Drosophila is context-dependent and can thus be expected to involve inputs from multiple sensory modalities. Here, we use mechanical disruption and genetic approaches in Drosophila melanogaster to identify hearing as an important sensory modality in the context of intermale aggressive behavior. We demonstrate that neuronal silencing and targeted knockdown of hearing genes in the fly's auditory organ elicit abnormal aggression. Further, we show that exposure to courtship or aggression song has opposite effects on aggression. Our data define the importance of hearing in the control of Drosophila intermale aggression and open perspectives to decipher how hearing and other sensory modalities are integrated at the neural circuit level.status: publishe
    corecore