179 research outputs found

    Validation of the Arteriograph working principle: questions still remain

    Full text link

    Longitudinal study to assess changes in arterial stiffness and cardiac output parameters among low-risk pregnant women.

    Get PDF
    AIM: A single-centre, prospective longitudinal study to assess changes in maternal arterial stiffness and cardiac output parameters among low-risk healthy pregnant women. METHODOLOGY: Thirty low-risk, healthy, pregnant women attending their routine antenatal dating ultrasound scan were recruited. Non-invasive assessment of arterial stiffness and cardiac output was undertaken at five gestational windows from 11 to 40 weeks of pregnancy. Data were analysed using a linear mixed model incorporating time and other relevant predictors as fixed effects, and patient as a random effect. RESULTS: Gestational age had a significant effect on all arterial stiffness parameters, including brachial augmentation index (AIx) (p = .001), aortic AIx (p = .002) and aortic pulse wave velocity (p = .002). The aortic AIx (%) reduced during pregnancy: the lowest mean (standard error, SE) was 4.07 (1.01) at 28 weeks before it increased to 7.04 (SE 1.64) at 40 weeks. Similarly, non-invasive assessments of cardiac output (p < .001), stroke volume (p = .014), heart rate (p < .001) and total peripheral resistance (p < .001) demonstrated significant changes with gestational age. Mean cardiac output (l/m) increased during pregnancy reaching a peak at 28 weeks gestation 6.66 (SE 0.28), but dropped thereafter to reach 5.71 (SE 0.25) around term. CONCLUSION: The current study provides pregnancy normograms for gestational changes in arterial stiffness and cardiac output parameters among low-risk, healthy pregnant women. Further work will be required to assess the risk of placental mediated diseases and pregnancy outcome among pregnant women with parameters outside the normal range

    Assessment of arterial function in pregnancy: recommendations of the International Working Group on Maternal Haemodynamics.

    Get PDF
    There is strong evidence supporting a role of maternal arterial dysfunction in pregnancy-specific disorders such as pre-eclampsia and intra-uterine growth restriction. As more work is focused towards this field, it is important that methods and interpretation of arterial function assessment are utilised appropriately. Here, we summarise techniques and devices commonly used in maternal health studies, with considerations of technical application within pregnant cohorts

    Validation of non-invasive central blood pressure devices: ARTERY Society task force consensus statement on protocol standardization

    Get PDF
    The original Riva-Rocci method to measure blood pressure (BP) using a cuff at the upper arm assumed the pressure obtained by this technique was a good proxy for central aortic BP.1,2 The clinical (prognostic) importance of brachial cuff BP is undeniable for both the assessment of cardiovascular risk associated with elevated BP and the benefits of treatment-induced BP reduction.3 However, it is also generally appreciated that peripheral artery systolic BP (SBP; brachial or radial artery) may be an inaccurate substitute for central SBP.4 This has been reported in human studies using intra-arterial catheterization of peripheral and central arteries.5–8 There may also be a discrepancy between peripheral and central BP responses to vasoactive drugs.9 These findings are corroborated in larger studies using non-invasive central aortic BP methods,10–13 and, while yet to be fully adopted in clinical practice, an independent prognostic value of central BP has been demonstrated.14–16 Altogether, there is a growing interest among clinicians towards improving risk estimates by using devices that provide more accurate measures of central aortic BP than those provided by current brachial cuff BP methods. Many non-invasive devices have been developed that purport to estimate central BP from different peripheral artery sites (e.g. radial, brachial, carotid arteries) using different principles of recording the pressure or surrogate signals (e.g. applanation tonometry, oscillometry, ultrasound, or magnetic resonance imaging) and different calibration methods to derive central BP. Since upper arm cuff-based devices to estimate central BP are more clinically appealing, in recent years several companies have developed such devices using a variety of techniques (e.g. oscillometric sub-diastolic or supra-systolic waveform analysis with generalized transfer functions), which employ a variety of signal processing steps to estimate central BP from peripheral signals.17,18 Yet, with no standardized guidelines,17 the accuracy testing of these new devices (as well as the preceding devices) has not been undertaken in a uniform fashion with comparable protocols, emphasizing the need for guidance in this field.19–22 An international task force was convened to address this situation

    Retrograde adenoviral vector targeting of nociresponsive pontospinal noradrenergic neurons in the rat in vivo

    Get PDF
    The spinal dorsal horn receives a dense innervation of noradrenaline-containing fibers that originate from pontine neurons in the A5, locus coeruleus (LC), and A7 cell groups. These pontospinal neurons are believed to constitute a component of the endogenous analgesic system. We used an adenoviral vector with a catecholaminergic-selective promoter (AVV-PRS) to retrogradely label the noradrenergic neurons projecting to the lumbar (L4–L5) dorsal horn with enhanced green fluorescent protein (EGFP) or monomeric red fluorescent protein (mRFP). Retrogradely labeled neurons (145 ± 12, n = 14) were found in A5-12%, LC-80% and A7-8% after injection of AVV-PRS-EGFP to the dorsal horn of L4–L5. These neurons were immunopositive for dopamine β-hydroxylase, indicating that they were catecholaminergic. Retrograde labeling was optimal 7 days after injection, persisted for over 4 weeks, and was dependent on viral vector titer. The spinal topography of the noradrenergic projection was examined using EGFP- and mRFP-expressing adenoviral vectors. Pontospinal neurons provide bilateral innervation of the cord and there was little overlap in the distribution of neurons projecting to the cervical and lumbar regions. The axonal arbor of the pontospinal neurons was visualized with GFP immunocytochemistry to show projections to the inferior olive, cerebellum, thalamus, and cortex but not to the hippocampus or caudate putamen. Formalin testing evoked c-fos expression in these pontospinal neurons, suggesting that they were nociresponsive (A5-21%, LC-16%, and A7-26%, n = 8). Thus, we have developed a viral vector-based strategy to selectively, retrogradely target the pontospinal noradrenergic neurons that are likely to be involved in the descending control of nociception

    2024 Recommendations for Validation of Noninvasive Arterial Pulse Wave Velocity Measurement Devices

    Get PDF
    BACKGROUND: Arterial stiffness, as measured by arterial pulse wave velocity (PWV), is an established biomarker for cardiovascular risk and target-organ damage in individuals with hypertension. With the emergence of new devices for assessing PWV, it has become evident that some of these devices yield results that display significant discrepancies compared with previous devices. This discrepancy underscores the importance of comprehensive validation procedures and the need for international recommendations. METHODS: A stepwise approach utilizing the modified Delphi technique, with the involvement of key scientific societies dedicated to arterial stiffness research worldwide, was adopted to formulate, through a multidisciplinary vision, a shared approach to the validation of noninvasive arterial PWV measurement devices. RESULTS: A set of recommendations has been developed, which aim to provide guidance to clinicians, researchers, and device manufacturers regarding the validation of new PWV measurement devices. The intention behind these recommendations is to ensure that the validation process can be conducted in a rigorous and consistent manner and to promote standardization and harmonization among PWV devices, thereby facilitating their widespread adoption in clinical practice. CONCLUSIONS: It is hoped that these recommendations will encourage both users and developers of PWV measurement devices to critically evaluate and validate their technologies, ultimately leading to improved consistency and comparability of results. This, in turn, will enhance the clinical utility of PWV as a valuable tool for assessing arterial stiffness and informing cardiovascular risk stratification and management in individuals with hypertension

    A new oscillometric method for pulse wave analysis: comparison with a common tonometric method

    Get PDF
    In the European Society of Cardiology–European Society of Hypertension guidelines of the year 2007, the consequences of arterial stiffness and wave reflection on cardiovascular mortality have a major role. But the investigators claimed the poor availability of devices/methods providing easy and widely suitable measuring of arterial wall stiffness or their surrogates like augmentation index (AIx) or aortic systolic blood pressure (aSBP). The aim of this study was the validation of a novel method determining AIx and aSBP based on an oscillometric method using a common cuff (ARCSolver) against a validated tonometric system (SphygmoCor). aSBP and AIx measured with the SphygmoCor and ARCSolver method were compared for 302 subjects. The mean age was 56 years with an s.d. of 20 years. At least two iterations were performed in each session. This resulted in 749 measurements. For aSBP the mean difference was −0.1 mm Hg with an s.d. of 3.1 mm Hg. The mean difference for AIx was 1.2% with an s.d. of 7.9%. There was no significant difference in reproducibility of AIx for both methods. The variation estimate of inter- and intraobserver measurements was 6.3% for ARCSolver and 7.5% for SphygmoCor. The ARCSolver method is a novel method determining AIx and aSBP based on an oscillometric system with a cuff. The results agree with common accepted tonometric measurements. Its application is easy and for widespread use

    Effects of Aberrant Pax6 Gene Dosage on Mouse Corneal Pathophysiology and Corneal Epithelial Homeostasis

    Get PDF
    Background: Altered dosage of the transcription factor PAX6 causes multiple human eye pathophysiologies. PAX6(+/-) heterozygotes suffer from aniridia and aniridia-related keratopathy (ARK), a corneal deterioration that probably involves a limbal epithelial stem cell (LESC) deficiency. Heterozygous Pax6(+/Sey-Neu) (Pax6(+/-)) mice recapitulate the human disease and are a good model of ARK. Corneal pathologies also occur in other mouse Pax6 mutants and in PAX77(Tg/-) transgenics, which over-express Pax6 and model human PAX6 duplication. Methodology/Principal Findings: We used electron microscopy to investigate ocular defects in Pax6(+/-) heterozygotes (low Pax6 levels) and PAX77(Tg/-) transgenics (high Pax6 levels). As well as the well-documented epithelial defects, aberrant Pax6 dosage had profound effects on the corneal stroma and endothelium in both genotypes, including cellular vacuolation, similar to that reported for human macular corneal dystrophy. We used mosaic expression of an X-linked LacZ transgene in X-inactivation mosaic female (XLacZ(Tg/-)) mice to investigate corneal epithelial maintenance by LESC clones in Pax6(+/-) and PAX77(Tg/-) mosaic mice. PAX77(Tg/-) mosaics, over-expressing Pax6, produced normal corneal epithelial radial striped patterns (despite other corneal defects), suggesting that centripetal cell movement was unaffected. Moderately disrupted patterns in Pax6(+/-) mosaics were corrected by introducing the PAX77 transgene (in Pax6(+/-), PAX77(Tg/-) mosaics). Pax6(Leca4/+), XLacZ(Tg/-) mosaic mice (heterozygous for the Pax6(Leca4) missense mutation) showed more severely disrupted mosaic patterns. Corrected corneal epithelial stripe numbers (an indirect estimate of active LESC clone numbers) declined with age (between 15 and 30 weeks) in wild-type XLacZ(Tg/-) mosaics. In contrast, corrected stripe numbers were already low at 15 weeks in Pax6(+/-) and PAX77(Tg/-) mosaic corneas, suggesting Pax6 under-and over-expression both affect LESC clones. Conclusions/Significance: Pax6(+/-) and PAX77(Tg/-) genotypes have only relatively minor effects on LESC clone numbers but cause more severe corneal endothelial and stromal defects. This should prompt further investigations of the pathophysiology underlying human aniridia and ARK
    corecore