1,630 research outputs found

    On Bootstrap Percolation in Living Neural Networks

    Full text link
    Recent experimental studies of living neural networks reveal that their global activation induced by electrical stimulation can be explained using the concept of bootstrap percolation on a directed random network. The experiment consists in activating externally an initial random fraction of the neurons and observe the process of firing until its equilibrium. The final portion of neurons that are active depends in a non linear way on the initial fraction. The main result of this paper is a theorem which enables us to find the asymptotic of final proportion of the fired neurons in the case of random directed graphs with given node degrees as the model for interacting network. This gives a rigorous mathematical proof of a phenomena observed by physicists in neural networks

    The Environmental Dependence of the Infrared Luminosity and Stellar Mass Functions

    Get PDF
    We investigate the dependence of the galaxy infrared luminosity function (LF) and the associated stellar mass function (SMF) on environment and spectral type using photometry from the Two Micron All Sky Survey and redshifts from the Las Campanas Redshift Survey for galaxies brighter than M_J<-19+5 log h. In the field environment, galaxies with emission lines have LFs with much steeper faint end slopes (alpha_J=-1.39) than galaxies without emission lines (alpha_J=-0.59). In the cluster environment, however, even the non-emission line galaxies have a steep faint-end LF (alpha_J=-1.22). There is also a significant (95%) difference between the overall cluster and field LFs, ΔαJ=0.34,ΔMJ=0.54\Delta \alpha_J=-0.34, \Delta M_J^\ast=-0.54. All of these variations are more pronounced in the SMFs, which we compute by relating the strength of the 4000 A break in the optical spectra to a mass-to-light ratio.Comment: 14 pages, 13 figures, emulateapj style ApJ, post-referee. Very minor changes, mostly typographical in natur

    Models of the ICM with Heating and Cooling: Explaining the Global and Structural X-ray Properties of Clusters

    Full text link
    (Abridged) Theoretical models that include only gravitationally-driven processes fail to match the observed mean X-ray properties of clusters. As a result, there has recently been increased interest in models in which either radiative cooling or entropy injection play a central role in mediating the properties of the intracluster medium. Both sets of models give reasonable fits to the mean properties of clusters, but cooling only models result in fractions of cold baryons in excess of observationally established limits and the simplest entropy injection models do not treat the "cooling core" structure present in many clusters and cannot account for entropy profiles revealed by recent X-ray observations. We consider models that marry radiative cooling with entropy injection, and confront model predictions for the global and structural properties of massive clusters with the latest X-ray data. The models successfully and simultaneously reproduce the observed L-T and L-M relations, yield detailed entropy, surface brightness, and temperature profiles in excellent agreement with observations, and predict a cooled gas fraction that is consistent with observational constraints. The model also provides a possible explanation for the significant intrinsic scatter present in the L-T and L-M relations and provides a natural way of distinguishing between clusters classically identified as "cooling flow" clusters and dynamically relaxed "non-cooling flow" clusters. The former correspond to systems that had only mild levels (< 300 keV cm^2) of entropy injection, while the latter are identified as systems that had much higher entropy injection. This is borne out by the entropy profiles derived from Chandra and XMM-Newton.Comment: 20 pages, 15 figures, accepted for publication in the Astrophysical Journa

    Evolution of Group Galaxies from the First Red-Sequence Cluster Survey

    Full text link
    We study the evolution of the red galaxy fraction (f_red) in 905 galaxy groups with 0.15 < z < 0.52. The galaxy groups are identified by the `probability Friends-of-Friends' algorithm from the first Red-Sequence Cluster Survey (RCS1) photometric-redshift sample. There is a high degree of uniformity in the properties of the red-sequence of the group galaxies, indicating that the luminous red-sequence galaxies in the groups are already in place by z~0.5 and that they have a formation epoch of z>2. In general, groups at lower redshifts exhibit larger f_red than those at higher redshifts, showing a group Butcher-Oemler effect. We investigate the evolution of f_red by examining its dependence on four parameters, which can be classified as one intrinsic and three environmental: galaxy stellar mass (M_*), total group stellar mass(M_{*,grp}, a proxy for group halo mass), normalized group-centric radius (r_grp), and local galaxy density (Sigma_5). We find that M_* is the dominant parameter such that there is a strong correlation between f_red and galaxy stellar mass. Furthermore, the dependence of f_red on the environmental parameters is also a strong function of M_*. Massive galaxies (M_* > 10^11 M_sun) show little dependence of f_red on r_grp, M_{*,grp}, and Sigma_5 over the redshift range. The dependence of f_red on these parameters is primarily seen for galaxies with lower masses, especially for M_* < 10^{10.6} M_{sun}. We observe an apparent `group down-sizing' effect, in that galaxies in lower-mass halos, after controlling for galaxy stellar mass, have lower f_red. We find a dependence of \fred on both \rgrp and \SigmaF after the other parameters are controlled. At a fixed \rgrp, there is a significant dependence of f_red on Sigma_5, while r_grp gradients of f_red are seen for galaxies in similar Sigma_5 regions. This indicates .....Comment: ApJ accepte

    WINGS: a WIde-field Nearby Galaxy-cluster Survey. I - Optical imaging

    Full text link
    This is the first paper of a series that will present data and scientific results from the WINGS project, a wide-field, multiwavelength imaging and spectroscopic survey of galaxies in 77 nearby clusters. The sample was extracted from the ROSAT catalogs with constraints on the redshift (0.0420). The global goal of the WINGS project is the systematic study of the local cosmic variance of the cluster population and of the properties of cluster galaxies as a function of cluster properties and local environment. This data collection will allow to define a local 'Zero-Point' reference against which to gauge the cosmic evolution when compared to more distant clusters. The core of the project consists of wide-field optical imaging of the selected clusters in the B and V bands. We have also completed a multi-fiber, medium resolution spectroscopic survey for 51 of the clusters in the master sample. In addition, a NIR (JK) survey of ~50 clusters and an H_alpha + UV survey of some 10 clusters are presently ongoing, while a very-wide-field optical survey has also been programmed. In this paper we briefly outline the global objectives and the main characteristics of the WINGS project. Moreover, the observing strategy and the data reduction of the optical imaging survey (WINGS-OPT) are presented. We have achieved a photometric accuracy of ~0.025mag, reaching completeness to V~23.5. Field size and resolution (FWHM) span the absolute intervals (1.6-2.7)Mpc and (0.7-1.7)kpc, respectively, depending on the redshift and on the seeing. This allows the planned studies to get a valuable description of the local properties of clusters and galaxies in clusters.Comment: 24 pages, 15 figures, Accepted by Astronomy and Astrophysic

    An ASCA Study of the Heavy Element Distribution in Clusters of Galaxies

    Full text link
    We perform a spatially resolved X-ray spectroscopic study of a set of 11 relaxed clusters of galaxies observed by the ROSAT/PSPC and ASCA/SIS. Using a method which corrects for the energy dependent effects of the ASCA PSF based on ROSAT images, we constrain the spatial distribution of Ne, Si, S and Fe in each cluster. Theoretical prescriptions for the chemical yields of Type Ia and II supernovae, then allow determination of the Fe enrichment from both types of supernovae as a function of radius within each cluster. Using optical measurements from the literature, we also determine the iron mass-to-light ratio (IMLR) separately for Fe synthesized in both types of supernovae. For clusters with the best photon statistics, we find that the total Fe abundance decreases significantly with radius, while the Si abundance is either flat or decreases less rapidly, resulting in an increasing Si/Fe ratio with radius. This result indicates a greater predominance of Type II SNe enrichment at large radii in clusters. We suggest that the high Si/Fe ratios in the outskirts of rich clusters may arise from enrichment by Type II SNe released to ICM via galactic star burst driven winds. Abridged.Comment: 17 pages, ApJ in press (Nov. 2000), a study of systematics is adde

    Investigation of fiber/matrix adhesion: test speed and specimen shape effects in the cylinder test

    Get PDF
    The cylinder test, developed from the microdroplet test, was adapted to assess the interfacial adhesion strength between fiber and matrix. The sensitivity of cylinder test to pull-out speed and specimen geometry was measured. It was established that the effect of test speed can be described as a superposition of two opposite, simultaneous effects which have been modeled mathematically by fitting two parameter Weibull curves on the measured datas. Effects of the cylinder size and its geometrical relation on the measured strength values have been analyzed by finite element method. It was concluded that the geometry has a direct influence on the stress formation. Based on the results achieved, recommendations were given on how to perform the novel single fiber cylinder test

    Clustering and the hyperbolic geometry of complex networks

    Get PDF
    Clustering is a fundamental property of complex networks and it is the mathematical expression of a ubiquitous phenomenon that arises in various types of self-organized networks such as biological networks, computer networks or social networks. In this paper, we consider what is called the global clustering coefficient of random graphs on the hyperbolic plane. This model of random graphs was proposed recently by Krioukov et al. as a mathematical model of complex networks, under the fundamental assumption that hyperbolic geometry underlies the structure of these networks. We give a rigorous analysis of clustering and characterize the global clustering coefficient in terms of the parameters of the model. We show how the global clustering coefficient can be tuned by these parameters and we give an explicit formula for this function.Comment: 51 pages, 1 figur

    Control of quality and silo storage of sunflower seeds using near infrared technology

    Get PDF
    This work assesses the application of near infrared spectroscopy technology for the quality control of sunflower seeds direct from farmers and from a storage silo. The results show that the analytical method employing near infrared spectroscopy can be used as a rapid and non-destructive tool for the determination of moisture, fat and high/low oleic acid contents in samples of sunflower seeds. The ranges obtained were comparable to those reported for classic chemical methods, and were between 4.6-21.4% for moisture; 38.4-49.6% for fat, and 60.0-93.1% for oleic acid expressed as percentage of total fatty acids. A stepwise discriminant analysis was performed to determine the most useful wavelengths for classifying sunflower seeds in terms of their (high/low) oleic acid composition. The discriminant model allows the classification of sunflower seeds with high or low oleic acid contents, with a prediction rate of 90.5% for internal validation and of 89.4% for cross-validation.&lt;br&gt;&lt;br&gt;En este trabajo se evalúa la espectroscopía de infrarrojo cercano para su uso en el control de calidad y almacenamiento de semillas de girasol. Los resultados indican que el método analítico empleado puede utilizarse como método de determinación rápida de humedad, grasa y contenidos altos/bajos de ácido oleico. Los rangos de aplicación son comparables con los valores que se han determinado mediante métodos clásicos de análisis, encontrándose entre 4.6-21.4% la humedad, 38.4-49.6% la grasa y 60.0- 93.1% de ácido oleico del total de los ácidos grasos. Además se ha utilizado un análisis discriminarte lineal por pasos determinando las longitudes de onda más adecuadas para la clasificación de semillas de girasol en los grupos alto/bajo oleico. El modelo generado permitió la clasificación de semillas de girasol en los grupos alto y bajo oleico con unos porcentajes de muestras correctamente clasificadas de un 90.5% en validación interna y de un 89.4% en validación cruzada
    corecore