151 research outputs found

    Sperm centriole assessment identifies male factor infertility in couples with unexplained infertility - a pilot study

    Get PDF
    Unexplained infertility affects about one-third of infertile couples and is defined as the failure to identify the cause of infertility despite extensive evaluation of the male and female partners. Therefore, there is a need for a multiparametric approach to study sperm function. Recently, we developed a Fluorescence-Based Ratiometric Analysis of Sperm Centrioles (FRAC) assay to determine sperm centriole quality. Here, we perform a pilot study of sperm from 10 fertile men and 10 men in couples with unexplained infertility, using three centriolar biomarkers measured at three sperm locations from two sperm fractions, representing high and low sperm quality. We found that FRAC can identify men from couples with unexplained infertility as the likely source of infertility. Higher quality fractions from 10 fertile individuals were the reference population. All 180 studied FRAC values in the 10 fertile individuals fell within the reference population range. Eleven of the 180 studied FRAC values in the 10 infertile patients were outliers beyond the 95% confidence intervals (P = 0.0008). Three men with unexplained infertility had outlier FRAC values in their higher quality sperm fraction, while four had outlier FRAC values in their lower quality sperm fraction (3/10 and 4/10, P = 0.060 and P = 0.025, respectively), suggesting that these four individuals are infertile due, in part, to centriolar defects. We propose that a larger scale study should be performed to determine the ability of FRAC to identify male factor infertility and its potential contribution to sperm multiparametric analysis

    A nested-PCR with an Internal Amplification Control for the detection and differentiation of Bartonella henselae and B. clarridgeiae: An examination of cats in Trinidad

    Get PDF
    BACKGROUND: Bartonella species are bacterial blood parasites of animals capable of causing disease in both animals and man. Cat-Scratch Disease (CSD) in humans is caused mainly by Bartonella henselae and is acquired from the cat, which serves as a reservoir for the bacteria. A second species, B. clarridgeiae is also implicated in the disease. Diagnosis of Bartonellosis by culture requires a week or more of incubation on enriched media containing blood, and recovery is often complicated by faster growing contaminating bacteria and fungi. PCR has been explored as an alternative to culture for both the detection and species identification of Bartonella, however sensitivity problems have been reported and false negative reactions due to blood inhibitors have not generally been addressed in test design. METHODS: A novel, nested-PCR was designed for the detection of Bartonella henselae and B. clarridgeiae based on the strategy of targeting species-specific size differences in the 16S-23S rDNA intergenic regions. An Internal Amplification Control was used for detecting PCR inhibition. The nested-PCR was utilized in a study on 103 blood samples from pet and stray cats in Trinidad. RESULTS: None of the samples were positive by primary PCR, but the Nested-PCR detected Bartonella in 32/103 (31%) cats where 16 were infected with only B. henselae, 13 with only B. clarridgeiae and 3 with both species. Of 22 stray cats housed at an animal shelter, 13 (59%) were positive for either or both species, supporting the reported increased incidence of Bartonella among feral cats. CONCLUSION: The usefulness of a single PCR for the detection of Bartonella henselae and B. clarridgeiae in the blood of cats is questionable. A nested-PCR offers increased sensitivity over a primary PCR and should be evaluated with currently used methods for the routine detection and speciation of Bartonella henselae and B. clarridgeiae. In Trinidad, B. henselae and B. clarridgeiae are the predominant species in cats and infection appears highest with stray cats, however B. clarridgeiae may be present at levels similar to that of B. henselae in the pet population

    Multi-Locus Sequence Typing of Bartonella henselae Isolates from Three Continents Reveals Hypervirulent and Feline-Associated Clones

    Get PDF
    Bartonella henselae is a zoonotic pathogen and the causative agent of cat scratch disease and a variety of other disease manifestations in humans. Previous investigations have suggested that a limited subset of B. henselae isolates may be associated with human disease. In the present study, 182 human and feline B. henselae isolates from Europe, North America and Australia were analysed by multi-locus sequence typing (MLST) to detect any associations between sequence type (ST), host species and geographical distribution of the isolates. A total of 14 sequence types were detected, but over 66% (16/24) of the isolates recovered from human disease corresponded to a single genotype, ST1, and this type was detected in all three continents. In contrast, 27.2% (43/158) of the feline isolates corresponded to ST7, but this ST was not recovered from humans and was restricted to Europe. The difference in host association of STs 1 (human) and 7 (feline) was statistically significant (P≤0.001). eBURST analysis assigned the 14 STs to three clonal lineages, which contained two or more STs, and a singleton comprising ST7. These groups were broadly consistent with a neighbour-joining tree, although splits decomposition analysis was indicative of a history of recombination. These data indicate that B. henselae lineages differ in their virulence properties for humans and contribute to a better understanding of the population structure of B. henselae

    From cat scratch disease to endocarditis, the possible natural history of Bartonella henselae infection

    Get PDF
    BACKGROUND: Most patients with infectious endocarditis (IE) due to Bartonella henselae have a history of exposure to cats and pre-existing heart valve lesions. To date, none of the reported patients have had a history of typical cat scratch disease (CSD) which is also a manifestation of infection with B. henselae. CASE PRESENTATION: Here we report the case of a patient who had CSD and six months later developed IE of the mitral valve caused by B. henselae. CONCLUSION: Based on this unique case, we speculate that CSD represents the primary-infection of B. henselae and that IE follows in patients with heart valve lesions

    A doublecortin containing microtubule-associated protein is implicated in mechanotransduction in Drosophila sensory cilia

    Get PDF
    Mechanoreceptors are sensory cells that transduce mechanical stimuli into electrical signals and mediate the perception of sound, touch and acceleration. Ciliated mechanoreceptors possess an elaborate microtubule cytoskeleton that facilitates the coupling of external forces to the transduction apparatus. In a screen for genes preferentially expressed in Drosophila campaniform mechanoreceptors, we identified DCX-EMAP, a unique member of the EMAP family (echinoderm–microtubule-associated proteins) that contains two doublecortin domains. DCX-EMAP localizes to the tubular body in campaniform receptors and to the ciliary dilation in chordotonal mechanoreceptors in Johnston's organ, the fly's auditory organ. Adult flies carrying a piggyBac insertion in the DCX-EMAP gene are uncoordinated and deaf and display loss of mechanosensory transduction and amplification. Electron microscopy of mutant sensilla reveals loss of electron-dense materials within the microtubule cytoskeleton in the tubular body and ciliary dilation. Our results establish a catalogue of candidate genes for Drosophila mechanosensation and show that one candidate, DCX-EMAP, is likely to be required for mechanosensory transduction and amplification

    Atypical Membrane Topology and Heteromeric Function of Drosophila Odorant Receptors In Vivo

    Get PDF
    Drosophila olfactory sensory neurons (OSNs) each express two odorant receptors (ORs): a divergent member of the OR family and the highly conserved, broadly expressed receptor OR83b. OR83b is essential for olfaction in vivo and enhances OR function in vitro, but the molecular mechanism by which it acts is unknown. Here we demonstrate that OR83b heterodimerizes with conventional ORs early in the endomembrane system in OSNs, couples these complexes to the conserved ciliary trafficking pathway, and is essential to maintain the OR/OR83b complex within the sensory cilia, where odor signal transduction occurs. The OR/OR83b complex is necessary and sufficient to promote functional reconstitution of odor-evoked signaling in sensory neurons that normally respond only to carbon dioxide. Unexpectedly, unlike all known vertebrate and nematode chemosensory receptors, we find that Drosophila ORs and OR83b adopt a novel membrane topology with their N-termini and the most conserved loops in the cytoplasm. These loops mediate direct association of ORs with OR83b. Our results reveal that OR83b is a universal and integral part of the functional OR in Drosophila. This atypical heteromeric and topological design appears to be an insect-specific solution for odor recognition, making the OR/OR83b complex an attractive target for the development of highly selective insect repellents to disrupt olfactory-mediated host-seeking behaviors of insect disease vectors
    corecore