56 research outputs found

    DISTAG/TBCCd1 Is Required for Basal Cell Fate Determination in Ectocarpus

    Get PDF
    International audienceBrown algae are one of the most developmentally complex groups within the eukaryotes. As in many land plants and animals, their main body axis is established early in development, when the initial cell gives rise to two daughter cells that have apical and basal identities, equivalent to shoot and root identities in land plants, respectively. We show here that mutations in the Ectocarpus DISTAG (DIS) gene lead to loss of basal structures during both the gametophyte and the sporophyte generations. Several abnormalities were observed in the germinating initial cell in dis mutants, including increased cell size, disorganization of the Golgi apparatus, disruption of the microtubule network, and aberrant positioning of the nucleus. DIS encodes a TBCCd1 protein, which has a role in internal cell organization in animals, Chlamydomonas reinhardtii, and trypanosomes. Our study highlights the key role of subcellular events within the germinating initial cell in the determination of apical/basal cell identities in a brown alga and emphasizes the remarkable functional conservation of TBCCd1 in regulating internal cell organization across extremely distant eukaryotic groups

    Taming the massive genome of Scots pine with PiSy50k, a new genotyping array for conifer research

    Get PDF
    Pinus sylvestris (Scots pine) is the most widespread coniferous tree in the boreal forests of Eurasia, with major economic and ecological importance. However, its large and repetitive genome presents a challenge for conducting genome-wide analyses such as association studies, genetic mapping and genomic selection. We present a new 50K single-nucleotide polymorphism (SNP) genotyping array for Scots pine research, breeding and other applications. To select the SNP set, we first genotyped 480 Scots pine samples on a 407 540 SNP screening array and identified 47 712 high-quality SNPs for the final array (called 'PiSy50k'). Here, we provide details of the design and testing, as well as allele frequency estimates from the discovery panel, functional annotation, tissue-specific expression patterns and expression level information for the SNPs or corresponding genes, when available. We validated the performance of the PiSy50k array using samples from Finland and Scotland. Overall, 39 678 (83.2%) SNPs showed low error rates (mean = 0.9%). Relatedness estimates based on array genotypes were consistent with the expected pedigrees, and the level of Mendelian error was negligible. In addition, array genotypes successfully discriminate between Scots pine populations of Finnish and Scottish origins. The PiSy50k SNP array will be a valuable tool for a wide variety of future genetic studies and forestry applications.Peer reviewe

    The complete reference genome for grapevine (Vitis vinifera L.) genetics and breeding

    Get PDF
    Grapevine is one of the most economically important crops worldwide. However, the previous versions of the grapevine reference genome consisted of thousands of fragments with missing centromeres and telomeres, which limited the accessibility of the repetitive sequences, the centromeric and telomeric regions, and the inheritance of important agronomic traits in these regions. Here, we assembled a telomere-to-telomere (T2T) gap-free reference genome for the pinot noir cultivar (PN40024) using the PacBio HiFi long reads. The T2T reference genome (PN_T2T) was 69 Mb longer with 9026 more genes identified than the 12X.v2 version (Canaguier et al., 2017). We annotated 67% repetitive sequences, 19 centromeres and 36 telomeres, and incorporated gene annotations of previous versions into the PN_T2T. We detected a total of 377 gene clusters, which showed associations with complex traits, such as aroma and disease resistance. Even though the PN40024 sample had been selfed for nine generations, we still found nine genomic hotspots of heterozygous sites associated with biological processes, such as the oxidation-reduction process and protein phosphorylation. The fully annotated complete reference genome, therefore, provides important resources for grapevine genetics and breeding.This work was supported by the National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas) to Yongfeng Zhou, the National Key Research and Development Program of China(grant2019YFA0906200), the Agricultural Science and Technology Innovation Program (CAAS-ZDRW202101), the Shenzhen Science and Technology Program (grant KQTD2016113010482651), the BMBF funded de.NBI Cloud within the German Network for Bioinformatics Infrastructure (de.NBI). We thank Bianca Frommer, Marie Lahaye, David Navarro-Payá, Marcela K. Tello-Ruiz and Kapeel Chougule for their help in analyzing the RNA-Seq data and in running the gene annotation pipeline. This study is also based upon work from COST Action CA17111 INTEGRAPE and form COST Innovators Grant IG17111 GRAPEDIA, supported by COST (European Cooperation in Science and Technology).ViticultureT2Tgap-fregene clustercentromeretelomerePublishe

    Genetic Diversity in the UV Sex Chromosomes of the Brown Alga Ectocarpus

    No full text
    Three types of sex chromosome system exist in nature: diploid XY and ZW systems and haploid UV systems. For many years, research has focused exclusively on XY and ZW systems, leaving UV chromosomes and haploid sex determination largely neglected. Here, we perform a detailed analysis of DNA sequence neutral diversity levels across the U and V sex chromosomes of the model brown alga Ectocarpus using a large population dataset. We show that the U and V non-recombining regions of the sex chromosomes (SDR) exhibit about half as much neutral diversity as the autosomes. This difference is consistent with the reduced effective population size of these regions compared with the rest of the genome, suggesting that the influence of additional factors such as background selection or selective sweeps is minimal. The pseudoautosomal region (PAR) of this UV system, in contrast, exhibited surprisingly high neutral diversity and there were several indications that genes in this region may be under balancing selection. The PAR of Ectocarpus is known to exhibit unusual genomic features and our results lay the foundation for further work aimed at understanding whether, and to what extent, these structural features underlie the high level of genetic diversity. Overall, this study fills a gap between available information on genetic diversity in XY/ZW systems and UV systems and significantly contributes to advancing our knowledge of the evolution of UV sex chromosomes

    Acclimation of Medicago truncatula to cold stress

    No full text
    Acclimation of Medicago truncatula to cold stres
    corecore