29 research outputs found

    In situ investigation of the cytotoxic and interfacial characteristics of titanium when galvanically coupled with magnesium using scanning electrochemical microscopy

    Get PDF
    Recently, the cytotoxic properties of galvanically coupled Mg-Ti particles have been shown to different cells, although this cytotoxic effect has been attributed mainly to Mg due to its tendency to undergo activation when coupled with Ti forming a galvanic cell consisting of an anode (Mg) and a cathode (Ti). However, the role of the Ti cathode has been ignored in explaining the cytotoxic effect of Mg-Ti particles due to its high resistance to corrosion. In this work, the role of titanium (Ti) in the cytotoxic mechanism of galvanically coupled Mg-Ti particles was examined. A model galvanic cell was prepared to simulate the Mg-Ti particles. The electrochemical reactivity of the Ti sample and the pH change above it due to galvanic coupling with Mg were investigated using scanning electrochemical microscopy (SECM). It was observed that the Ti surface changed from passive to electrochemically active when coupled with Mg. Furthermore, after only 15 min galvanic coupling with Mg, the pH in the electrolyte volume adjacent to the Ti surface increased to an alkaline pH value. The effects of the galvanic coupling of Ti and Mg, as well as of the alkaline pH environment, on the viability of Hs27 fibroblast cells were investigated. It was shown that the viability of Hs27 cells significantly diminished when Mg and Ti were galvanically coupled compared to when the two metals were electrically disconnected. Next, the generation of reactive oxygen species (ROS) increased when the Ti and Mg were galvanically coupled. Thus, although Ti usually exhibited high corrosion resistance when exposed to physiological environments, an electrochemically active surface was observed when galvanically coupled with Mg, and this surface may participate in electron transfer reactions with chemical species in the neighboring environment; this participation resulted in the increased pH values above its surface and enhanced generation of ROS. These features contributed to the development of cytotoxic effects by galvanically coupled Mg-Ti particles

    Global, regional and national burden of bladder cancer and its attributable risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease study 2019

    Get PDF
    Introduction The current study determined the level and trends associated with the incidence, death and disability rates for bladder cancer and its attributable risk factors in 204 countries and territories, from 1990 to 2019, by age, sex and sociodemographic index (SDI; a composite measure of sociodemographic factors). Methods Various data sources from different countries, including vital registration and cancer registries were used to generate estimates. Mortality data and incidence data transformed to mortality estimates using the mortality to incidence ratio (MIR) were used in a cause of death ensemble model to estimate mortality. Mortality estimates were divided by the MIR to produce incidence estimates. Prevalence was calculated using incidence and MIR-based survival estimates. Age-specific mortality and standardised life expectancy were used to estimate years of life lost (YLLs). Prevalence was multiplied by disability weights to estimate years lived with disability (YLDs), while disability-adjusted life years (DALYs) are the sum of the YLLs and YLDs. All estimates were presented as counts and age-standardised rates per 100 000 population. Results Globally, there were 524 000 bladder cancer incident cases (95% uncertainty interval 476 000 to 569 000) and 229 000 bladder cancer deaths (211 000 to 243 000) in 2019. Age-standardised death rate decreased by 15.7% (8.6 to 21.0), during the period 1990–2019. Bladder cancer accounted for 4.39 million (4.09 to 4.70) DALYs in 2019, and the age-standardised DALY rate decreased significantly by 18.6% (11.2 to 24.3) during the period 1990–2019. In 2019, Monaco had the highest age-standardised incidence rate (31.9 cases (23.3 to 56.9) per 100 000), while Lebanon had the highest age-standardised death rate (10.4 (8.1 to 13.7)). Cabo Verde had the highest increase in age-standardised incidence (284.2% (214.1 to 362.8)) and death rates (190.3% (139.3 to 251.1)) between 1990 and 2019. In 2019, the global age-standardised incidence and death rates were higher among males than females, across all age groups and peaked in the 95+ age group. Globally, 36.8% (28.5 to 44.0) of bladder cancer DALYs were attributable to smoking, more so in males than females (43.7% (34.0 to 51.8) vs 15.2% (10.9 to 19.4)). In addition, 9.1% (1.9 to 19.6) of the DALYs were attributable to elevated fasting plasma glucose (FPG) (males 9.3% (1.6 to 20.9); females 8.4% (1.6 to 19.1)). Conclusions There was considerable variation in the burden of bladder cancer between countries during the period 1990–2019. Although there was a clear global decrease in the age-standardised death, and DALY rates, some countries experienced an increase in these rates. National policy makers should learn from these differences, and allocate resources for preventative measures, based on their country-specific estimates. In addition, smoking and elevated FPG play an important role in the burden of bladder cancer and need to be addressed with prevention programmes.publishedVersio

    Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study

    Get PDF
    Background: Many causes of vision impairment can be prevented or treated. With an ageing global population, the demands for eye health services are increasing. We estimated the prevalence and relative contribution of avoidable causes of blindness and vision impairment globally from 1990 to 2020. We aimed to compare the results with the World Health Assembly Global Action Plan (WHA GAP) target of a 25% global reduction from 2010 to 2019 in avoidable vision impairment, defined as cataract and undercorrected refractive error. Methods: We did a systematic review and meta-analysis of population-based surveys of eye disease from January, 1980, to October, 2018. We fitted hierarchical models to estimate prevalence (with 95% uncertainty intervals [UIs]) of moderate and severe vision impairment (MSVI; presenting visual acuity from <6/18 to 3/60) and blindness (<3/60 or less than 10° visual field around central fixation) by cause, age, region, and year. Because of data sparsity at younger ages, our analysis focused on adults aged 50 years and older. Findings: Global crude prevalence of avoidable vision impairment and blindness in adults aged 50 years and older did not change between 2010 and 2019 (percentage change −0·2% [95% UI −1·5 to 1·0]; 2019 prevalence 9·58 cases per 1000 people [95% IU 8·51 to 10·8], 2010 prevalence 96·0 cases per 1000 people [86·0 to 107·0]). Age-standardised prevalence of avoidable blindness decreased by −15·4% [–16·8 to −14·3], while avoidable MSVI showed no change (0·5% [–0·8 to 1·6]). However, the number of cases increased for both avoidable blindness (10·8% [8·9 to 12·4]) and MSVI (31·5% [30·0 to 33·1]). The leading global causes of blindness in those aged 50 years and older in 2020 were cataract (15·2 million cases [9% IU 12·7–18·0]), followed by glaucoma (3·6 million cases [2·8–4·4]), undercorrected refractive error (2·3 million cases [1·8–2·8]), age-related macular degeneration (1·8 million cases [1·3–2·4]), and diabetic retinopathy (0·86 million cases [0·59–1·23]). Leading causes of MSVI were undercorrected refractive error (86·1 million cases [74·2–101·0]) and cataract (78·8 million cases [67·2–91·4]). Interpretation: Results suggest eye care services contributed to the observed reduction of age-standardised rates of avoidable blindness but not of MSVI, and that the target in an ageing global population was not reached. Funding: Brien Holden Vision Institute, Fondation Théa, The Fred Hollows Foundation, Bill & Melinda Gates Foundation, Lions Clubs International Foundation, Sightsavers International, and University of Heidelberg

    An Investigation on the Application of Pulsed Electrodialysis Reversal in Whey Desalination

    No full text
    Electrodialysis (ED) is frequently used in the desalination of whey. However, the fouling onto the membrane surface decreases the electrodialysis efficiency. Pulsed Electrodialysis Reversal (PER), in which short pulses of reverse polarity are applied, is expected to decrease the fouling onto membrane surface during ED. Three (PER) regimes were applied in the desalination of acid whey (pH &#8804; 5) to study their effects on the membrane fouling and the ED efficiency. The PER regimes were compared to the conventional ED as the control. For each regime, two consecutive runs were performed without any cleaning step in-between to intensify the fouling. After the second run, the membranes were subjected to the Scanning electron microscope (SEM) imaging and contact angle measurement to investigate the fouling on the membrane surface in different regimes. The ED parameters in the case of conventional ED were almost the same in the first and the second runs. However, the parameters related to the ED efficiency including ED capacity, ash transfer, and ED time, were deteriorated when the PER regimes were applied. The contact angle values indicated that the fouling on the diluate side of anion exchange membranes was more intensified in conventional ED compared to the PER regimes. The SEM images also showed that the fouling on the diluate side of both cation and anion exchange membranes under PER regimes was reduced in respect to the conventional ED. However, the back transfer to the diluate compartment when the reverse pulse was applied is dominant and lowers the ED efficiency slightly when the PER is applied

    Surface modification strategies and the functional mechanisms of gold nanozyme in biosensing and bioassay

    Get PDF
    Gold nanozymes (GNZs) have been widely used in biosensing and bioassay due to their interesting catalytic activities that enable the substitution of natural enzyme. This review explains different catalytic activities of GNZs that can be achieved by applying different modifications to their surface. The role of Gold nanoparticles (GNPs) in mimicking oxidoreductase, helicase, phosphatase were introduced. Moreover, the effect of surface properties and modifications on each catalytic activity was thoroughly discussed. The application of GNZs in biosensing and bioassay was classified in five categories based on the combination of the enzyme like activities and enhancing/inhibition of the catalytic activities in presence of the target analyte/s that is realized by proper surface modification engineering. These categories include catalytic activity enhancer, reversible catalytic activity inhibitor, binding selectivity enhancer, agglomeration base, and multienzyme like activity, which are explained and exemplified in this review. It also gives examples of those modifications that enable the application of GNZs for in vivo biosensing and bioassays

    Attractive applications of less noble metal ions in stripping voltammetry at metal film electrodes

    No full text
    An overview is dished up to show how the presence of a less noble metal ion in the samples subjected to electroanalytical measurements may sometimes lead to a positive effect on determinations of some analytes at the trace concentration level. First, an unexpected behaviour of Sb-based electrodes is mentioned allowing one its application also in the anodic potential range. A role of less noble metals is documented on the stripping voltammetric determination of mercury(II) or bismuth(III) at antimony film-coated carbon paste electrodes, where an apparent catalytic effect caused by the presence of cadmium(II) was observed offering a significant improvement of the analytical signal for both the cations. This phenomenon was attributed to the formation of intermetallic compounds during the electrolytic accumulation at the electrode surface. Very recently, a new approach was reported based on the preparation of metal film electrodes that utilize the combination of ex situ and/or in situ plating methods and the use of reversibly deposited mediator. By plating the metal film onto the surface of glassy carbon electrode together with zinc acting as mediator metal, followed by its subsequent oxidation and further deposition of the metal of interest, a higher surface coverage of the electrode with metal particles could be achieved. Application of the newly developed technique was demonstrated on the determination of nickel(II) at a lead film electrode with the aid of adsorptive stripping voltammetry, as well as on the determination of tin(IV) at a bismuth film electrode when using square-wave anodic stripping voltammetry

    Extractive spectrophotometric speciation of iron (II) and iron (III) using 4-(2-pyridylazo) resorcinol and 1-hexadecylpyridinium bromide with the partial least square method

    No full text
    A novel method has been developed for extractive spectrophotometric determination of Fe(II) and Fe(III) utilising the formation of the colour complexes with PAR, i.e., 4-(2-pyridylazo) resorcinol, their instantaneous ion-pairing with 1-hexadecylpyridinium counter ion (HDP+) in aqueous solution at pH 8.1, and subsequent extraction onto the organic phase of methyl isobutyl ketone (MIBK), where both ion-associates can sensitively be detected spectrophotometrically. A statistical method based on the partial least squares (PLS) has then been used to define amodel between calibration spectra and the corresponding concentrations. The quantitative PLS model was proposed for absorption spectra in the 350-750 nm range from the data obtained by analysing 25 various mixtures of both iron forms. Their concentration in the calibration matrix was 0.3-1.1 ppm for both Fe(II) and Fe(III); the detection limits being estimated to be 0.09 and 0.13 ppm, respectively. The performance of the model proposed has been confirmed by the determination / speciation of Fe(II) and Fe(III) in model solutions and real samples of pharmaceutical formulations

    Total flavonoid content in plant derived beverages determined by extractive stripping voltammetry

    No full text
    The catechin (CAT)-equivalent of flavonoids content of plant derived-beverages (PDBs) was estimated by partial extraction into the bare carbon paste and subsequent determination by differential pulsed voltammetry (DPV). The selectivity of the method was investigated by determining in presence of the potential interferences. While the determination of CAT in the presence of some non-flavonoid interferences was not possible by direct voltammetry, there was no interfering effect observed in the developed method. The effect of various paste compositions was studied on the extraction of the CAT onto the paste, and it was found that the combination of expanded graphite with silicon oil provides the best paste for the extraction. The RSD of 3.93% confirms a good repeatability of the developed method when 5 repetitive measurements were carried out. The LOD and LOQ of the developed method were calculated to be 1.2 × 10−8 M and 3.9 × 10−8 M, respectively. The accuracy of the developed method was controlled by analysis of the spiked sample, where the recovery rate of 98% and 104% indicate the accuracy of the developed ex-situ method. Finally, the developed method was successfully used for the determination of CAT-equivalent of flavonoids in a green tea sample
    corecore