97 research outputs found
A Cautionary Tale of European Disability Policies: Lessons for the United States
Variations in the size of the population receiving disability payments across countries cannot be explained by simple differences in health. Rather, the process to disability is shaped by both social and medical factors. When governments ignore this reality, a policy generated disability epidemic is possible. This paper compares disability policies in The Netherlands, Sweden, Germany, and the United States. It argues that the extraordinary increase in Dutch disability rolls in the 1970s was caused by a general government policy to reduce official unemployment. And that by the end of the 1980s, this policy had left Holland with a hidden unemployment rate that was twice its official rate and three times the unemployment rates in the United States and Germany
The de novo FAIRification process of a registry for vascular anomalies
Contains fulltext :
237199.pdf (Publisher’s version ) (Open Access
The anti-inflammatory cytokine interleukin-37 is an inhibitor of trained immunity.
Summary Trained immunity (TI) is a de facto innate immune memory program induced in monocytes/macrophages by exposure to pathogens or vaccines, which evolved as protection against infections. TI is characterized by immunometabolic changes and histone post-translational modifications, which enhance production of pro-inflammatory cytokines. As aberrant activation of TI is implicated in inflammatory diseases, tight regulation is critical; however, the mechanisms responsible for this modulation remain elusive. Interleukin-37 (IL-37) is an anti-inflammatory cytokine that curbs inflammation and modulates metabolic pathways. In this study, we show that administration of recombinant IL-37 abrogates the protective effects of TI in vivo, as revealed by reduced host pro-inflammatory responses and survival to disseminated candidiasis. Mechanistically, IL-37 reverses the immunometabolic changes and histone post-translational modifications characteristic of TI in monocytes, thus suppressing cytokine production in response to infection. IL-37 thereby emerges as an inhibitor of TI and as a potential therapeutic target in immune-mediated pathologies
Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity
Induction of trained immunity (innate immune memory) is mediated by activation of immune and metabolic pathways that result in epigenetic rewiring of cellular functional programs. Through network-level integration of transcriptomics and metabolomics data, we identify glycolysis, glutaminolysis, and the cholesterol synthesis pathway as indispensable for the induction of trained immunity by β-glucan in monocytes. Accumulation of fumarate, due to glutamine replenishment of the TCA cycle, integrates immune and metabolic circuits to induce monocyte epigenetic reprogramming by inhibiting KDM5 histone demethylases. Furthermore, fumarate itself induced an epigenetic program similar to β-glucan-induced trained immunity. In line with this, inhibition of glutaminolysis and cholesterol synthesis in mice reduced the induction of trained immunity by β-glucan. Identification of the metabolic pathways leading to induction of trained immunity contributes to our understanding of innate immune memory and opens new therapeutic avenues
Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity
Induction of trained immunity (innate immune memory) is mediated by activation of immune and metabolic pathways that result in epigenetic rewiring of cellular functional programs. Through network-level integration of transcriptomics and metabolomics data, we identify glycolysis, glutaminolysis, and the cholesterol synthesis pathway as indispensable for the induction of trained immunity by ß-glucan in monocytes. Accumulation of fumarate, due to glutamine replenishment of the TCA cycle, integrates immune and metabolic circuits to induce monocyte epigenetic reprogramming by inhibiting KDM5 histone demethylases. Furthermore, fumarate itself induced an epigenetic program similar to ß-glucan-induced trained immunity. In line with this, inhibition of glutaminolysis and cholesterol synthesis in mice reduced the induction of trained immunity by ß-glucan. Identification of the metabolic pathways leading to induction of trained immunity contributes to our understanding of innate immune memory and opens new therapeutic avenues.Netherlands Organization for Scientific Research (NWO). B.N. is supported by an NHMRC (Australia) CJ Martin Early Career Fellowship. N.P.R. Netherlands Heart Foundation (2012T051). N.P.R. and M.G.N. received a H2020 grant (H2020-PHC-2015-667873-2) from the European Union (grant agreement 667837). Fundação para a Ciência e Tecnologia, FCT (IF/00735/2014 to A.C., IF/00021/2014 to R.S., RECI/BBB-BQB/0230/2012 to L.G.G., and SFRH/BPD/96176/2013 to C. Cunha). The NMR spectrometers are part of the National NMR Facility supported by FCT (RECI/BBB-BQB/0230/2012). The research leading to these results received funding from the Fundação para a Ciência e Tecnologia (FCT), cofunded by Programa Operacional Regional do Norte (ON.2—O Novo Norte); from the Quadro de Referência Estratégico Nacional (QREN) through the Fundo Europeu de Desenvolvimento Regional (FEDER) and from the Projeto Estratégico – LA 26 – 2013–2014 (PEst-C/SAU/LA0026/2013). NIH (DK43351 and DK097485) and Helmsley Trust. D.L.W. is supported, in part, by the NIH (GM53522, GM083016, GM119197, and C06RR0306551
The role of Toll-like receptor 10 in modulation of trained immunity
Toll-like receptor 10 (TLR10) is the only member of the human Toll-like receptor family with an inhibitory function on the induction of innate immune responses and inflammation. However, its role in the modulation of trained immunity (innate immune memory) is unknown. In the present study, we assessed whether TLR10 modulates the induction of trained immunity induced by beta-glucan or bacillus Calmette-Guerin (BCG). Interleukin 10 receptor antagonist production was increased upon activation of TLR10 ex vivo after BCG vaccination, and TLR10 protein expression on monocytes was increased after BCG vaccination, whereas anti-TLR10 antibodies did not significantly modulate beta-glucan or BCG-induced trained immunity in vitro. A known immunomodulatory TLR10 missense single-nucleotide polymorphism (rs11096957) influenced trained immunity responses by beta-glucan or BCG in vitro. However, the in vivo induction of trained immunity by BCG vaccination was not influenced by TLR10 polymorphisms. In conclusion, TLR10 has a limited, non-essential impact on the induction of trained immunity in humans
Missense mutations in the WD40 domain of AHI1 cause non-syndromic retinitis pigmentosa
Background: Recent findings suggesting that Abelson helper integration site 1 (AHI1) is involved in non-syndromic retinal disease have been debated, as the functional significance of identified missense variants was uncertain. We assessed whether AHI1 variants cause non-syndromic retinitis pigmentosa (RP). Methods: Exome sequencing was performed in three probands with RP. The effects of the identified missense variants in AHI1 were predicted by three-dimensional structure homology modelling. Ciliary parameters were evaluated in patient's fibroblasts, and recombinant mutant proteins were expressed in ciliated retinal pigmented epithelium cells. Results: In the three patients with RP, three sets of compound heterozygous variants were detected in AHI1 (c.2174G>A; p.Trp725* and c.2258A>T; p.Asp753Val, c.660delC; p.Ser221Glnfs*10 and c.2090C>T; p.Pro697Leu, c.2087A>G; p.His696Arg and c.2429C>T; p.Pro810Leu). All four missense variants were present in the conserved WD40 domain of Jouberin, the ciliary protein encoded by AHI1, with variable predicted implications for the domain structure. No significant changes in the percentage of ciliated cells, nor in cilium length or intraflagellar transport were detected. However, expression of mutant recombinant Jouberin in ciliated cells showed a significantly decreased enrichment at the ciliary base. Conclusions: This report confirms that mutations in AHI1 can underlie autosomal recessive RP. Moreover, it structurally and functionally validates the effect of the RP-associated AHI1 variants on protein function, thus proposing a new genotype-phenotype correlation for AHI1 mutation associated retinal ciliopathies
- …