16 research outputs found
The ANTARES Optical Beacon System
ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It
consists of a three dimensional array of photomultiplier tubes that can detect
the Cherenkov light induced by charged particles produced in the interactions
of neutrinos with the surrounding medium. High angular resolution can be
achieved, in particular when a muon is produced, provided that the Cherenkov
photons are detected with sufficient timing precision. Considerations of the
intrinsic time uncertainties stemming from the transit time spread in the
photomultiplier tubes and the mechanism of transmission of light in sea water
lead to the conclusion that a relative time accuracy of the order of 0.5 ns is
desirable. Accordingly, different time calibration systems have been developed
for the ANTARES telescope. In this article, a system based on Optical Beacons,
a set of external and well-controlled pulsed light sources located throughout
the detector, is described. This calibration system takes into account the
optical properties of sea water, which is used as the detection volume of the
ANTARES telescope. The design, tests, construction and first results of the two
types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.
Advance in the conceptual design of the European DEMO magnet system
The European DEMO, i.e. the demonstration fusion power plant designed in the framework of the Roadmap to Fusion Electricity by the EUROfusion Consortium, is approaching the end of the pre-conceptual design phase, to be accomplished with a Gate Review in 2020, in which all DEMO subsystems will be reviewed by panels of independent experts. The latest 2018 DEMO baseline has major and minor radius of 9.1 m and 2.9 m, plasma current 17.9 MA, toroidal field on the plasma axis 5.2 T, and the peak field in the toroidal-field (TF) conductor 12.0 T. The 900 ton heavy TF coil is prepared in four lowerature-superconductor (LTS) variants, some of them differing slightly, other significantly, from the ITER TF coil design. Two variants of the CS coils are investigated - a purely LTS one resembling the ITER CS, and a hybrid coil, in which the innermost layers made of HTS allow the designers either to increase the magnetic flux, and thus the duration of the fusion pulse, or to reduce the outer radius of the CS coil. An issue presently investigated by mechanical analyzes is the fatigue load. Two variants of the poloidal field coils are being investigated. The magnet and conductor design studies are accompanied by the experimental tests on both LTS and HTS prototype samples, covering a broad range of DC and AC tests. Testing of quench behavior of the 15 kA HTS cables, with size and layout relevant for the fusion magnets and cooled by forced flow helium, is in preparation.</p
Sedimentation and Fouling of Optical Surfaces at the ANTARES Site
ANTARES is a project leading towards the construction and deployment of a
neutrino telescope in the deep Mediterranean Sea. The telescope will use an
array of photomultiplier tubes to detect the Cherenkov light emitted by muons
resulting from the interaction with matter of high energy neutrinos. In the
vicinity of the deployment site the ANTARES collaboration has performed a
series of in-situ measurements to study the change in light transmission
through glass surfaces during immersions of several months. The average loss of
light transmission is estimated to be only ~2% at the equator of a glass sphere
one year after deployment. It decreases with increasing zenith angle, and tends
to saturate with time. The transmission loss, therefore, is expected to remain
small for the several year lifetime of the ANTARES detector whose optical
modules are oriented downwards. The measurements were complemented by the
analysis of the ^{210}Pb activity profile in sediment cores and the study of
biofouling on glass plates. Despite a significant sedimentation rate at the
site, in the 0.02 - 0.05 cm.yr^{-1} range, the sediments adhere loosely to the
glass surfaces and can be washed off by water currents. Further, fouling by
deposits of light-absorbing particulates is only significant for surfaces
facing upwards.Comment: 18 pages, 14 figures (pdf), submitted to Astroparticle Physic
The ANTARES Optical Module
The ANTARES collaboration is building a deep sea neutrino telescope in the
Mediterranean Sea. This detector will cover a sensitive area of typically 0.1
km-squared and will be equipped with about 1000 optical modules. Each of these
optical modules consists of a large area photomultiplier and its associated
electronics housed in a pressure resistant glass sphere. The design of the
ANTARES optical module, which is a key element of the detector, has been
finalized following extensive R & D studies and is reviewed here in detail.Comment: 26 pages, 15 figures, to be published in NI
First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope
In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system. as well as the calibration devices of the detector. The in situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. These results demonstrate that with the full ANTARES neutrino telescope the design angular resolution of better than 0.3 degrees can be realistically achieved
Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope
The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a 3 dimensional matrix of 900 large area photomultiplier tubes housed in pressure resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the PMT chosen for ANTARES
The data acquisition system for the ANTARES neutrino telescope
The ANTARES neutrino telescope is being constructed in the Mediterranean Sea.
It consists of a large three-dimensional array of photo-multiplier tubes. The
data acquisition system of the detector takes care of the digitisation of the
photo-multiplier tube signals, data transport, data filtering, and data
storage. The detector is operated using a control program interfaced with all
elements. The design and the implementation of the data acquisition system are
described.Comment: 20 pages, 6 figures, accepted for publication in Nucl. Instrum. Meth.
Analysis of contact behavior in CORC® cabling and under axial tension
International audienceORC® cables or wires are composed of helical wound HTS REBCO tapes in multiple layers with high flexibility. However, compared with traditional multi-filament cables, the helical tape structure also brings new challenges to predicting the CORC® will be subjected to radial extrusion and circumferential stretching due to the electromagnetic force's action during operation. In this study, starting with the cabling process, the deformation of the tape, the normal contact force and friction distribution between the tape and the core are described. The effect of different winding parameters, such as core radius and winding helix angle, are obtained by combining theory and Finite Element Method (FEM) simulation. Then axial tensile loading of the multilayer CORC® is simulated and compared with the experimental curve including its critical current degradation. The results describe the interaction between tape and core that occurs during the tensile loading. The tape and the core are extruded and friction is generated, directly causing critical current degradation. The developed analytical and FE models can predict the mechanical and electrical properties of CORC® cabl
Development of a New Generic Analytical Modeling of AC Coupling Losses in Cable-in-Conduit Conductors
International audienc