12 research outputs found
A REVIEW ON REFERENCES OF HERBOMINERAL PREPARATIONS IN BRUHATRAYEE
Ayurveda science has been explained in the form of Hetu, Linga and Aushadha, where Aushadha has been given the much importance as success of treatment depends upon the usage of medicine considering the dose, time as well as the forms of medicine. Various sources are available to be used in the form of medicines as Herbs, Metals/Minerals or Animal products. Processed Metals/ Minerals such as Copper, Lead, Mercury were used in Ancient times but as the time goes, there was a drop in the usage of Herbomineral preparations in practice considering the claims put on its safety. Bruhatrayee being the most ancient and authentic texts of Ayurveda provides ample of references regarding usage of Herbomineral preparations for treatment of various conditions
Design of a Hybrid Honeycomb Unit Cell with Enhanced In-Plane Mechanical Properties
Sandwich structures with honeycomb core are widely used in the lightweight design and impact energy absorption applications in automotive, sporting, and aerospace industries. Recently, the auxetic honeycombs with negative Poisson's ratio attract substantial attention for different engineering products. In this study, we implement Additive Manufacturing technology, experimental testing, and Finite Element Analysis (FEA) to design and investigate the mechanical behavior of a novel unit cell for sandwich structure core. The new core model contains the conventional and auxetic honeycomb cells beside each other to create a Hybrid Honeycomb (HHC) for the sandwich structure. The different designs of unit cells with the same volume fraction of 15% are 3D-printed using Fused Deposition Modeling technique, and the comparative study on the mechanical behavior of conventional honeycomb, auxetic honeycomb, and HHC structures is conducted. The quasi-static uniaxial compression tests are performed on the printed samples to investigate the mechanical behavior of the printed structures. The deformation and failure modes of the different designs are studied at the cell level utilizing FEA of the compression test and experimental observation. The compressive strength of the different design is measured using three experimental tests. The new HHC unit cell design shows significantly higher mechanical properties than the auxetic and the conventional designs. Modifying the design variables of hybrid cellular core structure allows us to tailor the mechanical properties and deformation pattern in macro level to achieve the desired mechanical properties in sandwich structures
Biosynthesized ZnO-NPs from Morus indica attenuates methylglyoxal-induced protein glycation and RBC damage: In-vitro, in-vivo and molecular docking study
The development of advanced glycation end-products (AGEs) inhibitors is considered to have therapeutic potential in diabetic complications inhibiting the loss of the biomolecular function. In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized from aqueous leaf extract of Morus indica and were characterized by various techniques such as ultraviolet (UV)-Vis spectroscopy, Powder X-Ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Further, the inhibition of AGEs formation after exposure to ZnO-NPs was investigated by in-vitro, in-vivo, and molecular docking studies. Biochemical and histopathological changes after exposure to ZnO-NPs were also studied in streptozotocin-induced diabetic rats. ZnO-NPs showed an absorption peak at 359 nm with a purity of 92.62% and ~6–12 nm in size, which is characteristic of nanoparticles. The images of SEM showed agglomeration of smaller ZnO-NPs and EDS authenticating that the synthesized nanoparticles were without impurities. The biosynthesized ZnO-NPs showed significant inhibition in the formation of AGEs. The particles were effective against methylglyoxal (MGO) mediated glycation of bovine serum albumin (BSA) by inhibiting the formation of AGEs, which was dose-dependent. Further, the presence of MGO resulted in complete damage of biconcave red blood corpuscles (RBCs) to an irregular shape, whereas the morphological changes were prevented when they were treated with ZnO-NPs leading to the prevention of complications caused due to glycation. The administration of ZnO-NPs (100 mg Kg−1) in streptozotocin(STZ)-induced diabetic rats reversed hyperglycemia and significantly improved hepatic enzymes level and renal functionality, also the histopathological studies revealed restoration of kidney and liver damage nearer to normal conditions. Molecular docking of BSA with ZnO-NPs confirms that masking of lysine and arginine residues is one of the possible mechanisms responsible for the potent antiglycation activity of ZnO-NPs. The findings strongly suggest scope for exploring the therapeutic potential of diabetes-related complications.Fil: Anandan, Satish. University of Mysore; IndiaFil: Mahadevamurthy, Murali. University of Mysore; IndiaFil: Ansari, Mohammad Azam. Imam Abdulrahman Bin Faisal University; Arabia SauditaFil: Alzohairy, Mohammad A.. Al Qassim University; Arabia SauditaFil: Alomary, Mohammad N.. King Abdulaziz City For Science And Technology; Arabia SauditaFil: Siraj, Syeda Farha. University of Mysore; IndiaFil: Nagaraja, Sarjan Halugudde. University of Mysore; IndiaFil: Chikkamadaiah, Mahendra. University of Mysore; IndiaFil: Ramachandrappa, Lakshmeesha Thimappa. University of Mysore; IndiaFil: Krishnappa, Hemanth Kumar Naguvanahalli. University of Mysore; IndiaFil: Ledesma, Ana Estela. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet Noa Sur. Centro de Investigación en BiofÃsica Aplicada y Alimentos. - Universidad Nacional de Santiago del Estero. Centro de Investigación en BiofÃsica Aplicada y Alimentos; ArgentinaFil: Nagaraj, Amruthesh Kestur. University of Mysore; IndiaFil: Urooj, Asna. University of Mysore; Indi
In vitro inhibition of biofilm and virulence factor production in azole-resistant strains of Candida albicans isolated from diabetic foot by Artemisia vulgaris stabilized tin (IV) oxide nanoparticles
The advent of nanotechnology has been instrumental in the development of new drugs with novel targets. Recently, metallic nanoparticles have emerged as potential candidates to combat the threat of drug-resistant infections. Diabetic foot ulcers (DFUs) are one of the dreadful complications of diabetes mellitus due to the colonization of numerous drug-resistant pathogenic microbes leading to biofilm formation. Biofilms are difficult to treat due to limited penetration and non-specificity of drugs. Therefore, in the current investigation, SnO2 nanoparticles were biosynthesized using Artemisia vulgaris (AvTO-NPs) as a stabilizing agent and were characterized using ultraviolet–visible (UV–vis) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Furthermore, the efficacy of AvTO-NPs against biofilms and virulence factors of drug-resistant Candida albicans strains isolated from DFUs was assessed. AvTO-NPs displayed minimum inhibitory concentrations (MICs) ranging from 1 mg/mL to 2 mg/mL against four strains of C. albicans. AvTO-NPs significantly inhibited biofilm formation by 54.8%–87%, germ tube formation by 72%–90%, cell surface hydrophobicity by 68.2%–82.8%, and exopolysaccharide (EPS) production by 69%–86.3% in the test strains at respective 1/2xMIC. Biosynthesized NPs were effective in disrupting established mature biofilms of test strains significantly. Elevated levels of reactive oxygen species (ROS) generation in the AvTO-NPs-treated C. albicans could be the possible cause of cell death leading to biofilm inhibition. The useful insights of the present study could be exploited in the current line of treatment to mitigate the threat of biofilm-related persistent DFUs and expedite wound healing
Deciphering Early and Progressive Molecular Signatures in Alzheimer’s Disease through Integrated Longitudinal Proteomic and Pathway Analysis in a Rodent Model
Alzheimer’s disease (AD), the leading cause of dementia worldwide, remains a challenge due to its complex origin and degenerative character. The need for accurate biomarkers and treatment targets hinders early identification and intervention. To fill this gap, we used a novel longitudinal proteome methodology to examine the temporal development of molecular alterations in the cortex of an intracerebroventricular streptozotocin (ICV-STZ)-induced AD mouse model for disease initiation and progression at one, three-, and six-weeks post-treatment. Week 1 revealed metabolic protein downregulation, such as Aldoa and Pgk1. Week 3 showed increased Synapsin-1, and week 6 showed cytoskeletal protein alterations like Vimentin. The biological pathways, upstream regulators, and functional effects of proteome alterations were dissected using advanced bioinformatics methods, including Ingenuity Pathway Analysis (IPA) and machine learning algorithms. We identified Mitochondrial Dysfunction, Synaptic Vesicle Pathway, and Neuroinflammation Signaling as disease-causing pathways. Huntington’s Disease Signaling and Synaptogenesis Signaling were stimulated while Glutamate Receptor and Calcium Signaling were repressed. IPA also found molecular connections between PPARGC1B and AGT, which are involved in myelination and possible neoplastic processes, and MTOR and AR, which imply mechanistic involvements beyond neurodegeneration. These results help us comprehend AD’s molecular foundation and demonstrate the promise of focused proteomic techniques to uncover new biomarkers and therapeutic targets for AD, enabling personalized medicine
Table_1_In vitro inhibition of biofilm and virulence factor production in azole-resistant strains of Candida albicans isolated from diabetic foot by Artemisia vulgaris stabilized tin (IV) oxide nanoparticles.docx
The advent of nanotechnology has been instrumental in the development of new drugs with novel targets. Recently, metallic nanoparticles have emerged as potential candidates to combat the threat of drug-resistant infections. Diabetic foot ulcers (DFUs) are one of the dreadful complications of diabetes mellitus due to the colonization of numerous drug-resistant pathogenic microbes leading to biofilm formation. Biofilms are difficult to treat due to limited penetration and non-specificity of drugs. Therefore, in the current investigation, SnO2 nanoparticles were biosynthesized using Artemisia vulgaris (AvTO-NPs) as a stabilizing agent and were characterized using ultraviolet–visible (UV–vis) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Furthermore, the efficacy of AvTO-NPs against biofilms and virulence factors of drug-resistant Candida albicans strains isolated from DFUs was assessed. AvTO-NPs displayed minimum inhibitory concentrations (MICs) ranging from 1 mg/mL to 2 mg/mL against four strains of C. albicans. AvTO-NPs significantly inhibited biofilm formation by 54.8%–87%, germ tube formation by 72%–90%, cell surface hydrophobicity by 68.2%–82.8%, and exopolysaccharide (EPS) production by 69%–86.3% in the test strains at respective 1/2xMIC. Biosynthesized NPs were effective in disrupting established mature biofilms of test strains significantly. Elevated levels of reactive oxygen species (ROS) generation in the AvTO-NPs-treated C. albicans could be the possible cause of cell death leading to biofilm inhibition. The useful insights of the present study could be exploited in the current line of treatment to mitigate the threat of biofilm-related persistent DFUs and expedite wound healing.</p