97 research outputs found

    Synthesis of Mesoporous Silica@Co–Al Layered Double Hydroxide Spheres: Layer-by-Layer Method and Their Effects on the Flame Retardancy of Epoxy Resins

    Get PDF
    Hierarchical mesoporous silica@Co–Al layered double hydroxide (m-SiO2@Co–Al LDH) spheres were prepared through a layer-by-layer assembly process, in order to integrate their excellent physical and chemical functionalities. TEM results depicted that, due to the electrostatic potential difference between m-SiO2 and Co–Al LDH, the synthetic m-SiO2@Co–Al LDH hybrids exhibited that m-SiO2 spheres were packaged by the Co–Al LDH nanosheets. Subsequently, the m-SiO2@Co–Al LDH spheres were incorporated into epoxy resin (EP) to prepare specimens for investigation of their flame-retardant performance. Cone results indicated that m-SiO2@Co–Al LDH incorporated obviously improved fire retardant of EP. A plausible mechanism of fire retardant was hypothesized based on the analyses of thermal conductivity, char residues, and pyrolysis fragments. Labyrinth effect of m-SiO2 and formation of graphitized carbon char catalyzed by Co–Al LDH play pivotal roles in the flame retardance enhancement

    TLR9 polymorphisms in African populations: no association with severe malaria, but evidence of cis-variants acting on gene expression

    Get PDF
    BACKGROUND: During malaria infection the Toll-like receptor 9 (TLR9) is activated through induction with plasmodium DNA or another malaria motif not yet identified. Although TLR9 activation by malaria parasites is well reported, the implication to the susceptibility to severe malaria is not clear. The aim of this study was to assess the contribution of genetic variation at TLR9 to severe malaria. METHODS: This study explores the contribution of TLR9 genetic variants to severe malaria using two approaches. First, an association study of four common single nucleotide polymorphisms was performed on both family- and population-based studies from Malawian and Gambian populations (n>6000 individual). Subsequently, it was assessed whether TLR9 expression is affected by cis-acting variants and if these variants could be mapped. For this work, an allele specific expression (ASE) assay on a panel of HapMap cell lines was carried out. RESULTS: No convincing association was found with polymorphisms in TLR9 for malaria severity, in either Gambian or Malawian populations, using both case-control and family based study designs. Using an allele specific expression assay it was observed that TLR9 expression is affected by cis-acting variants, these results were replicated in a second experiment using biological replicates. CONCLUSION: By using the largest cohorts analysed to date, as well as a standardized phenotype definition and study design, no association of TLR9 genetic variants with severe malaria was found. This analysis considered all common variants in the region, but it is remains possible that there are rare variants with association signals. This report also shows that TLR9 expression is potentially modulated through cis-regulatory variants, which may lead to differential inflammatory responses to infection between individuals

    Cryptococcal Cell Morphology Affects Host Cell Interactions and Pathogenicity

    Get PDF
    Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 µm. Cell enlargement was observed in vivo, producing cells up to 100 µm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aΔ pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection

    Discovery of a Modified Tetrapolar Sexual Cycle in Cryptococcus amylolentus and the Evolution of MAT in the Cryptococcus Species Complex

    Get PDF
    Sexual reproduction in fungi is governed by a specialized genomic region called the mating-type locus (MAT). The human fungal pathogenic and basidiomycetous yeast Cryptococcus neoformans has evolved a bipolar mating system (a, α) in which the MAT locus is unusually large (>100 kb) and encodes >20 genes including homeodomain (HD) and pheromone/receptor (P/R) genes. To understand how this unique bipolar mating system evolved, we investigated MAT in the closely related species Tsuchiyaea wingfieldii and Cryptococcus amylolentus and discovered two physically unlinked loci encoding the HD and P/R genes. Interestingly, the HD (B) locus sex-specific region is restricted (∼2 kb) and encodes two linked and divergently oriented homeodomain genes in contrast to the solo HD genes (SXI1α, SXI2a) of C. neoformans and Cryptococcus gattii. The P/R (A) locus contains the pheromone and pheromone receptor genes but has expanded considerably compared to other outgroup species (Cryptococcus heveanensis) and is linked to many of the genes also found in the MAT locus of the pathogenic Cryptococcus species. Our discovery of a heterothallic sexual cycle for C. amylolentus allowed us to establish the biological roles of the sex-determining regions. Matings between two strains of opposite mating-types (A1B1×A2B2) produced dikaryotic hyphae with fused clamp connections, basidia, and basidiospores. Genotyping progeny using markers linked and unlinked to MAT revealed that meiosis and uniparental mitochondrial inheritance occur during the sexual cycle of C. amylolentus. The sexual cycle is tetrapolar and produces fertile progeny of four mating-types (A1B1, A1B2, A2B1, and A2B2), but a high proportion of progeny are infertile, and fertility is biased towards one parental mating-type (A1B1). Our studies reveal insights into the plasticity and transitions in both mechanisms of sex determination (bipolar versus tetrapolar) and sexual reproduction (outcrossing versus inbreeding) with implications for similar evolutionary transitions and processes in fungi, plants, and animals

    Who Is at Risk for Diagnostic Discrepancies? Comparison of Pre- and Postmortal Diagnoses in 1800 Patients of 3 Medical Decades in East and West Berlin

    Get PDF
    <div><h3>Background</h3><p>Autopsy rates in Western countries consistently decline to an average of <5%, although clinical autopsies represent a reasonable tool for quality control in hospitals, medically and economically. Comparing pre- and postmortal diagnoses, diagnostic discrepancies as uncovered by clinical autopsies supply crucial information on how to improve clinical treatment. The study aimed at analyzing current diagnostic discrepancy rates, investigating their influencing factors and identifying risk profiles of patients that could be affected by a diagnostic discrepancy.</p> <h3>Methods and Findings</h3><p>Of all adult autopsy cases of the Charité Institute of Pathology from the years 1988, 1993, 1998, 2003 and 2008, the pre- and postmortal diagnoses and all demographic data were analyzed retrospectively. Based on power analysis, 1,800 cases were randomly selected to perform discrepancy classification (class I-VI) according to modified Goldman criteria. The rate of discrepancies in major diagnoses (class I) was 10.7% (95% CI: 7.7%–14.7%) in 2008 representing a reduction by 15.1%. Subgroup analysis revealed several influencing factors to significantly correlate with the discrepancy rate. Cardiovascular diseases had the highest frequency among class-I-discrepancies. Comparing the 1988-data of East- and West-Berlin, no significant differences were found in diagnostic discrepancies despite an autopsy rate differing by nearly 50%. A risk profile analysis visualized by intuitive heatmaps revealed a significantly high discrepancy rate in patients treated in low or intermediate care units at community hospitals. In this collective, patients with genitourinary/renal or infectious diseases were at particularly high risk.</p> <h3>Conclusions</h3><p>This is the current largest and most comprehensive study on diagnostic discrepancies worldwide. Our well-powered analysis revealed a significant rate of class-I-discrepancies indicating that autopsies are still of value. The identified risk profiles may aid both pathologists and clinicians to identify patients at increased risk for a discrepant diagnosis and possibly suboptimal treatment intra vitam.</p> </div

    Self-Assembly Fabrication of Hollow Mesoporous Silica@Co–Al Layered Double Hydroxide@Graphene and Application in Toxic Effluents Elimination

    Get PDF
    Here, we propose a self-assembly process to prepare hierarchical HM-SiO2@Co–Al LDH@graphene, with the purpose of combining their outstanding performance. Hollow mesoporous silica was first synthesized as the core, using a novel sonochemical method, followed by a controlled shell coating process and chemical reduction. As a result of the electrostatic potential difference among HM-SiO2, Co–Al LDH, and graphene oxide, the HM-SiO2 spheres were coated by Co–Al LDH and graphene. Subsequently, the HM-SiO2@Co–Al LDH@graphene spheres were introduced into an epoxy resin (EP) matrix for investigation of their toxic effluents capture and elimination effectiveness during combustion. The amount of toxic CO and volatile organic compounds from the epoxy resin decomposition significantly suppressed after incorporating the HM-SiO2@Co–Al LDH@graphene hybrids, implying a reduced toxicity

    Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements

    Get PDF
    We present the results of dust emission polarization measurements of Ophiuchus-B (Oph-B) carried out using the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) camera with its associated polarimeter (POL-2) on the James Clerk Maxwell Telescope in Hawaii. This work is part of the B-fields in Star-forming Region Observations survey initiated to understand the role of magnetic fields in star formation for nearby star-forming molecular clouds. We present a first look at the geometry and strength of magnetic fields in Oph-B. The field geometry is traced over ~0.2 pc, with clear detection of both of the sub-clumps of Oph-B. The field pattern appears significantly disordered in sub-clump Oph-B1. The field geometry in Oph-B2 is more ordered, with a tendency to be along the major axis of the clump, parallel to the filamentary structure within which it lies. The degree of polarization decreases systematically toward the dense core material in the two sub-clumps. The field lines in the lower density material along the periphery are smoothly joined to the large-scale magnetic fields probed by NIR polarization observations. We estimated a magnetic field strength of 630 ± 410 μG in the Oph-B2 sub-clump using a Davis–Chandrasekhar–Fermi analysis. With this magnetic field strength, we find a mass-to-flux ratio λ = 1.6 ± 1.1, which suggests that the Oph-B2 clump is slightly magnetically supercritical

    Abstracts of presentations on plant protection issues at the xth international congress of virology: August 11-16, 1996 Binyanei haOoma, Jerusalem Iarael part 3(final part)

    Get PDF

    Oxygen as a Driver of Early Arthropod Micro-Benthos Evolution

    Get PDF
    BACKGROUND: We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos. METHODOLOGY/PRINCIPAL FINDINGS: The PO(2) of modern normoxic seawater is 21 kPa (air-equilibrated water), a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO(2) of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O(2). Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O(2) levels. The PO(2) of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O(2). Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian) oxygen-levels that increased the PO(2) gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O(2). Ostracods became the numerically dominant arthropod micro-benthos of the Phanerozoic. CONCLUSIONS/SIGNIFICANCE: Our work has implications from an evolutionary context for understanding how oxygen-level in marine ecosystems drives behaviour

    Correction

    Get PDF
    corecore