13 research outputs found

    Light sterile neutrino sensitivity at the nuSTORM facility

    Get PDF
    A facility that can deliver beams of electron and muon neutrinos from the decay of a stored muon beam has the potential to unambiguously resolve the issue of the evidence for light sterile neutrinos that arises in short-baseline neutrino oscillation experiments and from estimates of the effective number of neutrino flavors from fits to cosmological data. In this paper, we show that the nuSTORM facility, with stored muons of 3.8 GeV/c ± 10%, will be able to carry out a conclusive muon neutrino appearance search for sterile neutrinos and test the LSND and MiniBooNE experimental signals with 10σ sensitivity, even assuming conservative estimates for the systematic uncertainties. This experiment would add greatly to our knowledge of the contribution of light sterile neutrinos to the number of effective neutrino flavors from the abundance of primordial helium production and from constraints on neutrino energy density from the cosmic microwave background. The appearance search is complemented by a simultaneous muon neutrino disappearance analysis that will facilitate tests of various sterile neutrino models

    Neutrinos from Stored Muons nuSTORM: Expression of Interest

    Get PDF
    The nuSTORM facility has been designed to deliver beams of electron and muon neutrinos from the decay of a stored muon beam with a central momentum of 3.8 GeV/c and a momentum spread of 10%. The facility is unique in that it will: serve the future long- and short-baseline neutrino-oscillation programmes by providing definitive measurements of electron-neutrino- and muon-neutrino-nucleus cross sections with percent-level precision; allow searches for sterile neutrinos of exquisite sensitivity to be carried out; and constitute the essential first step in the incremental development of muon accelerators as a powerful new technique for particle physics. Of the world's proton-accelerator laboratories, only CERN and FNAL have the infrastructure required to mount nuSTORM. Since no siting decision has yet been taken, the purpose of this Expression of Interest (EoI) is to request the resources required to: investigate in detail how nuSTORM could be implemented at CERN; and develop options for decisive European contributions to the nuSTORM facility and experimental programme wherever the facility is sited. The EoI defines a two-year programme culminating in the delivery of a Technical Design Report

    Interim Design Report

    No full text
    The International Design Study for the Neutrino Factory (the IDS-NF) was established by the community at the ninth International Workshop on Neutrino Factories, super-beams, and beta- beams which was held in Okayama in August 2007. The IDS-NF mandate is to deliver the Reference Design Report (RDR) for the facility on the timescale of 2012/13. In addition, the mandate for the study [3] requires an Interim Design Report to be delivered midway through the project as a step on the way to the RDR. This document, the IDR, has two functions: it marks the point in the IDS-NF at which the emphasis turns to the engineering studies required to deliver the RDR and it documents baseline concepts for the accelerator complex, the neutrino detectors, and the instrumentation systems. The IDS-NF is, in essence, a site-independent study. Example sites, CERN, FNAL, and RAL, have been identified to allow site-specific issues to be addressed in the cost analysis that will be presented in the RDR. The choice of example sites should not be interpreted as implying a preferred choice of site for the facility

    Can democracy safeguard the future?

    Get PDF
    The physics potential is briefly summarized for an e+e- linear collider operating at center-of-mass energies up to \sqrt{s} = 1 TeV and delivering integrated luminosities up to \int L = 0.5 ab^(-1) in one to two years. This machine will allow us to perform precision studies of the top quark and the electroweak gauge bosons at the per-mille level. It will be an ideal instrument to investigate the properties of the Higgs boson and to establish essential elements of the Higgs mechanism as the fundamental mechanism for breaking the electroweak symmetries. In the area beyond the Standard Model, new particles and their interactions can be discovered and explored comprehensively. In supersymmetric theories, the mechanism of the symmetry breaking can be investigated experimentally and the underlying unified theory can be reconstructed. The high precision allows stable extrapolations up to scales near the Planck mass.Comment: 25 pages (LaTeX

    Light sterile neutrino sensitivity at the nuSTORM facility

    No full text
    A facility that can deliver beams of electron and muon neutrinos from the decay of a stored muon beam has the potential to unambiguously resolve the issue of the evidence for light sterile neutrinos that arises in short-baseline neutrino oscillation experiments and from estimates of the effective number of neutrino flavors from fits to cosmological data. In this paper, we show that the nuSTORM facility, with stored muons of 3.8 GeV/c +/- 10%, will be able to carry out a conclusive muon neutrino appearance search for sterile neutrinos and test the LSND and MiniBooNE experimental signals with 10 sigma sensitivity, even assuming conservative estimates for the systematic uncertainties. This experiment would add greatly to our knowledge of the contribution of light sterile neutrinos to the number of effective neutrino flavors from the abundance of primordial helium production and from constraints on neutrino energy density from the cosmic microwave background. The appearance search is complemented by a simultaneous muon neutrino disappearance analysis that will facilitate tests of various sterile neutrino models

    International design study for the neutrino factory : interim design report

    No full text
    The International Design Study for the Neutrino Factory (the IDS-NF) was established by the community at the ninth "International Workshop on Neutrino Factories, super-beams, and beta- beams" which was held in Okayama in August 2007. The IDS-NF mandate is to deliver the Reference Design Report (RDR) for the facility on the timescale of 2012/13. In addition, the mandate for the study [3] requires an Interim Design Report to be delivered midway through the project as a step on the way to the RDR. This document, the IDR, has two functions: it marks the point in the IDS-NF at which the emphasis turns to the engineering studies required to deliver the RDR and it documents baseline concepts for the accelerator complex, the neutrino detectors, and the instrumentation systems. The IDS-NF is, in essence, a site-independent study. Example sites, CERN, FNAL, and RAL, have been identified to allow site-specific issues to be addressed in the cost analysis that will be presented in the RDR. The choice of example sites should not be interpreted as implying a preferred choice of site for the facility
    corecore