29 research outputs found

    Unconventional Josephson Effect in Hybrid Superconductor-Topological Insulator Devices

    Full text link
    We report on transport properties of Josephson junctions in hybrid superconducting-topological insulator devices, which show two striking departures from the common Josephson junction behavior: a characteristic energy that scales inversely with the width of the junction, and a low characteristic magnetic field for suppressing supercurrent. To explain these effects, we propose a phenomenological model which expands on the existing theory for topological insulator Josephson junctions

    Introduction to topological superconductivity and Majorana fermions

    Full text link
    This short review article provides a pedagogical introduction to the rapidly growing research field of Majorana fermions in topological superconductors. We first discuss in some details the simplest "toy model" in which Majoranas appear, namely a one-dimensional tight-binding representation of a p-wave superconductor, introduced more than ten years ago by Kitaev. We then give a general introduction to the remarkable properties of Majorana fermions in condensed matter systems, such as their intrinsically non-local nature and exotic exchange statistics, and explain why these quasiparticles are suspected to be especially well suited for low-decoherence quantum information processing. We also discuss the experimentally promising (and perhaps already successfully realized) possibility of creating topological superconductors using semiconductors with strong spin-orbit coupling, proximity-coupled to standard s-wave superconductors and exposed to a magnetic field. The goal is to provide an introduction to the subject for experimentalists or theorists who are new to the field, focusing on the aspects which are most important for understanding the basic physics. The text should be accessible for readers with a basic understanding of quantum mechanics and second quantization, and does not require knowledge of quantum field theory or topological states of matter.Comment: 21 pages, 5 figure

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Tunable cylindrical shell as an element in acoustic metamaterial

    No full text

    SLAC-PUB-14969 Signatures of Majorana Fermions in Hybrid Superconductor-Topological Insulator Devices

    No full text
    The ability to measure and manipulate complex particles in the solid state is a cornerstone of modern condensed-matter physics. Typical excitations of a sea of electrons, called quasiparticles, have properties similar to those of free electrons. However, in recent years exotic excitations with very different properties have been created in designer quantum materials, including Dirac fermions in graphene 1 and fractionally-charged quasiparticles in fractional quantum Hall systems 2. Here we report signatures of a new quasiparticle – the Majorana fermion – in Josephson junctions consisting of two superconducting leads coupled through a three-dimensional topological insulator 3. We observe two striking departures from the common transport properties of Josephson junctions: a characteristic energy that scales inversely with the width of the junction, and a low characteristic magnetic field for suppressing supercurrent. To explain these effects, we propose a phenomenological model in which a one-dimensional wire of Majorana fermions is present along the width of the junction, similar to a theoretical prediction by Fu and Kane 4. These results present an opening into the investigation of Majorana fermions in the solid state and their exotic properties, including non-Abelian statistics 5, a suggested basis for fault-tolerant quantum computation 6. The Majorana fermion, a charge-neutral particle tha

    Cannabis and benzodiazepines as determinants of methadone trough plasma concentration variability in maintenance treatment: a transnational study

    Get PDF
    Purpose: To assess tobacco, alcohol, cannabis and benzodiazepine use in methadone maintenance treatment (MMT) as potential sources of variability in methadone pharmacokinetics. Methods: Trough plasma (R)- and (S)-methadone concentrations were measured on 77 Australian and 74 Swiss MMT patients with no additional medications other than benzodiazepines. Simple and multiple regression analyses were performed for the primary metric, plasma methadone concentration/dose. Results: Cannabis and methadone dose were significantly associated with lower 24-h plasma (R)- and (S)-methadone concentrations/dose. The models containing these variables explained 14–16% and 17–25% of the variation in (R)- and (S)-methadone concentration/dose, respectively. Analysis of 61 patients using only CYP3A4 metabolised benzodiazepines showed this class to be associated with higher (R)-concentration/dose, which is consistent with a potential competitive inhibition of CYP3A4. Conclusion: Cannabis use and higher methadone doses in MMT could in part be a response to—or a cause of—more rapid methadone clearance. The effects of cannabis and benzodiazepines should be controlled for in future studies on methadone pharmacokinetics in MMT.Richard Hallinan, Séverine Crettol, Kingsley Agho, John Attia, Jacques Besson, Marina Croquette-Krokar, Robert Hämmig, Jean-Jacques Déglon, Andrew Byrne, John Ray, Andrew A. Somogyi, Chin B. Ea
    corecore