We report on transport properties of Josephson junctions in hybrid
superconducting-topological insulator devices, which show two striking
departures from the common Josephson junction behavior: a characteristic energy
that scales inversely with the width of the junction, and a low characteristic
magnetic field for suppressing supercurrent. To explain these effects, we
propose a phenomenological model which expands on the existing theory for
topological insulator Josephson junctions