5,926 research outputs found

    New constraints on the major neutron source in low-mass AGB stars

    Get PDF
    We compare updated Torino postprocessing asymptotic giant branch (AGB) nucleosynthesis model calculations with isotopic compositions of mainstream SiC dust grains from low-mass AGB stars. Based on the data-model comparison, we provide new constraints on the major neutron source, 13C({\alpha},n)16O in the He-intershell, for the s-process. We show that the literature Ni, Sr, and Ba grain data can only be consistently explained by the Torino model calculations that adopt the recently proposed magnetic-buoyancy-induced 13C-pocket. This observation provides strong support to the suggestion of deep mixing of H into the He-intershell at low 13C concentrations as a result of efficient transport of H through magnetic tubes.Comment: ApJ, accepte

    Superconducting Cosmc Strings and Primordial Magnetic Fields

    Full text link
    We consider grand unified theories with superconducting cosmic strings and which admit the mechanism for generating primordial magnetic fields recently discussed by Vachaspati. We show that these models are severely constrained by cosmological arguments. Quite generically, either stable springs or vortons will form. Provided the mass per unit length of the strings is sufficiently large, these stable configurations will overclose the Universe.Comment: BROWN-HET-830, 14 pages, use phyzz

    Excitation spectrum of bosons in a finite one-dimensional circular waveguide via the Bethe ansatz

    Get PDF
    The exactly solvable Lieb-Liniger model of interacting bosons in one-dimension has attracted renewed interest as current experiments with ultra-cold atoms begin to probe this regime. Here we numerically solve the equations arising from the Bethe ansatz solution for the exact many-body wave function in a finite-size system of up to twenty particles for attractive interactions. We discuss the novel features of the solutions, and how they deviate from the well-known string solutions [H. B. Thacker, Rev. Mod. Phys.\ \textbf{53}, 253 (1981)] at finite densities. We present excited state string solutions in the limit of strong interactions and discuss their physical interpretation, as well as the characteristics of the quantum phase transition that occurs as a function of interaction strength in the mean-field limit. Finally we compare our results to those of exact diagonalization of the many-body Hamiltonian in a truncated basis. We also present excited state solutions and the excitation spectrum for the repulsive 1D Bose gas on a ring.Comment: 13 pages, 12 figure

    Meta-Learning Strategies through Value Maximization in Neural Networks

    Full text link
    Biological and artificial learning agents face numerous choices about how to learn, ranging from hyperparameter selection to aspects of task distributions like curricula. Understanding how to make these meta-learning choices could offer normative accounts of cognitive control functions in biological learners and improve engineered systems. Yet optimal strategies remain challenging to compute in modern deep networks due to the complexity of optimizing through the entire learning process. Here we theoretically investigate optimal strategies in a tractable setting. We present a learning effort framework capable of efficiently optimizing control signals on a fully normative objective: discounted cumulative performance throughout learning. We obtain computational tractability by using average dynamical equations for gradient descent, available for simple neural network architectures. Our framework accommodates a range of meta-learning and automatic curriculum learning methods in a unified normative setting. We apply this framework to investigate the effect of approximations in common meta-learning algorithms; infer aspects of optimal curricula; and compute optimal neuronal resource allocation in a continual learning setting. Across settings, we find that control effort is most beneficial when applied to easier aspects of a task early in learning; followed by sustained effort on harder aspects. Overall, the learning effort framework provides a tractable theoretical test bed to study normative benefits of interventions in a variety of learning systems, as well as a formal account of optimal cognitive control strategies over learning trajectories posited by established theories in cognitive neuroscience.Comment: Under Revie

    FLOWERING LOCUS C -dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways

    Get PDF
    Background The circadian system drives pervasive biological rhythms in plants. Circadian clocks integrate endogenous timing information with environmental signals, in order to match rhythmic outputs to the local day/night cycle. Multiple signaling pathways affect the circadian system, in ways that are likely to be adaptively significant. Our previous studies of natural genetic variation in Arabidopsis thaliana accessions implicated FLOWERING LOCUS C (FLC) as a circadian-clock regulator. The MADS-box transcription factor FLC is best known as a regulator of flowering time. Its activity is regulated by many regulatory genes in the "autonomous" and vernalization-dependent flowering pathways. We tested whether these same pathways affect the circadian system. Results Genes in the autonomous flowering pathway, including FLC, were found to regulate circadian period in Arabidopsis. The mechanisms involved are similar, but not identical, to the control of flowering time. By mutant analyses, we demonstrate a graded effect of FLC expression upon circadian period. Related MADS-box genes had less effect on clock function. We also reveal an unexpected vernalization-dependent alteration of periodicity. Conclusion This study has aided in the understanding of FLC's role in the clock, as it reveals that the network affecting circadian timing is partially overlapping with the floral-regulatory network. We also show a link between vernalization and circadian period. This finding may be of ecological relevance for developmental programing in other plant species
    • …
    corecore