5,529 research outputs found

    Aperiodic colorings and tilings of Coxeter groups

    Full text link
    We construct a limit aperiodic coloring of hyperbolic groups. Also we construct limit strongly aperiodic strictly balanced tilings of the Davis complex for all Coxeter groups

    On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond

    Get PDF
    An improved understanding of the divergence-free constraint for the incompressible Navier--Stokes equations leads to the observation that a semi-norm and corresponding equivalence classes of forces are fundamental for their nonlinear dynamics. The recent concept of {\em pressure-robustness} allows to distinguish between space discretisations that discretise these equivalence classes appropriately or not. This contribution compares the accuracy of pressure-robust and non-pressure-robust space discretisations for transient high Reynolds number flows, starting from the observation that in generalised Beltrami flows the nonlinear convection term is balanced by a strong pressure gradient. Then, pressure-robust methods are shown to outperform comparable non-pressure-robust space discretisations. Indeed, pressure-robust methods of formal order kk are comparably accurate than non-pressure-robust methods of formal order 2k2k on coarse meshes. Investigating the material derivative of incompressible Euler flows, it is conjectured that strong pressure gradients are typical for non-trivial high Reynolds number flows. Connections to vortex-dominated flows are established. Thus, pressure-robustness appears to be a prerequisite for accurate incompressible flow solvers at high Reynolds numbers. The arguments are supported by numerical analysis and numerical experiments.Comment: 43 pages, 18 figures, 2 table

    Quantitative Assessment of the Anatomical Footprint of the C1 Pedicle Relative to the Lateral Mass: A Guide for C1 Lateral Mass Fixation

    Get PDF
    Study Design: Anatomic study. Objectives: To determine the relationship of the anatomical footprint of the C1 pedicle relative to the lateral mass (LM). Methods: Anatomic measurements were made on fresh frozen human cadaveric C1 specimens: pedicle width/height, LM width/height (minimum/maximum), LM depth, distance between LMā€™s medial aspect and pedicleā€™s medial border, distance between LMā€™s lateral aspect to pedicleā€™s lateral border, distance between pedicleā€™s inferior aspect and LMā€™s inferior border, distance between archā€™s midline and pedicleā€™s medial border. The percentage of LM medial to the pedicle and the distance from the center of the LM to the pedicleā€™s medial wall were calculated. Results: A total of 42 LM were analyzed. The C1 pedicleā€™s lateral aspect was nearly confluent with the LMā€™s lateral border. Average pedicle width was 9.0 Ā± 1.1 mm, and average pedicle height was 5.0 Ā± 1.1 mm. Average LM width and depth were 17.0 Ā± 1.6 and 17.2 Ā± 1.6 mm, respectively. There was 6.9 Ā± 1.5 mm of bone medial to the medial C1 pedicle, which constituted 41% Ā± 9% of the LMā€™s width. The distance from C1 archā€™s midline to the medial pedicle was 13.5 Ā± 2.0 mm. The LMā€™s center was 1.6 Ā± 1 mm lateral to the medial pedicle wall. There was on average 3.5 Ā± 0.6 mm of the LM inferior to the pedicle inferior border. Conclusions: The center of the lateral mass is 1.6 Ā± 1 mm lateral to the medial wall of the C1 pedicle and approximately 15 mm from the midline. There is 6.9 Ā± 1.5 mm of bone medial to the medial C1 pedicle. Thus, the medial aspect of C1 pedicle may be used as an anatomic reference for locating the center of the C1 LM for screw fixation

    Erratum to: Nonpositive Curvature and the Ptolemy Inequality

    Get PDF
    The following changes would like to be highlighted in the abstract: We provide examples of nonlocally compact, geodesic Ptolemy metric spaces that are not uniquely geodesic. On the other hand, we show that locally compact, geodesic Ptolemy metric spaces are uniquely geodesic. Moreover, we prove that a metric space is CAT(0) if and only if it is Busemann convex and Ptolem

    The Use of Bone Morphogenetic Protein in the Intervertebral Disk Space in Minimally Invasive Transforaminal Lumbar Interbody Fusion

    Get PDF
    Study Design: Retrospective Cohort. Objective: The objective of this study was to characterize one surgeonā€™s experience over a 10-year period using rhBMP-2 in the disk space for minimally invasive transforaminal lumbar interbody fusion (MIS TLIF). Summary of Background Data: MIS TLIF has been utilized as a technique for decreasing patientsā€™ immediate postoperative pain, decreasing blood loss, and shortened hospital stays. Effectiveness and complications of rhBMP-2ā€™s use in the disk space is limited because of its off-label status. Methods: Retrospective analysis of consecutive MIS TLIFs performed by senior author between 2004 and 2014. rhBMP-2 was used in the disk space in all cases. Patients were stratified based on the dose of rhBMP-2 utilized. Patients had 9 to 12 month computerized tomography scan to evaluate for bony fusion and continued follow-up for 18 months. Results: A total of 688 patients underwent a MIS TLIF. A medium kit of rhBMP-2 was utilized in 97 patients, and small kit was used in 591 patients. Fusion rate was 97.9% and this was not different between the 2 groups with 96/97 patients fusing in the medium kit group and 577/591 patients fusing in the small kit group. Five patients taken back to the operating room for symptomatic pseudoarthrosis, 4 reoperated for bony hyperostosis, and 10 radiographic pseudoarthroses that did not require reoperation. A statistically significant difference in the rate of foraminal hyperostosis was found when using a medium sized kit of rhBMP-2 was 4.12% (4/97 patients), compared with a small kit (0/591 patients, P=0.0004). Conclusions: Utilization of rhBMP-2 in an MIS TLIF leads to high fusion rate (97.9%), with an acceptable complication profile. The development of foraminal hyperostosis is a rare complication that only affected 0.6% of patients, and seems to be a dose related complication, as this complication was eliminated when a lower dose of rhBMP-2 was utilized

    Multi-scale space-variant FRep cellular structures

    Get PDF
    Existing mesh and voxel based modeling methods encounter difficulties when dealing with objects containing cellular structures on several scale levels and varying their parameters in space. We describe an alternative approach based on using real functions evaluated procedurally at any given point. This allows for modeling fully parameterized, nested and multi-scale cellular structures with dynamic variations in geometric and cellular properties. The geometry of a base unit cell is defined using Function Representation (FRep) based primitives and operations. The unit cell is then replicated in space using periodic space mappings such as sawtooth and triangle waves. While being replicated, the unit cell can vary its geometry and topology due to the use of dynamic parameterization. We illustrate this approach by several examples of microstructure generation within a given volume or along a given surface. We also outline some methods for direct rendering and fabrication not involving auxiliary mesh and voxel representations

    Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier--Stokes equations

    Get PDF
    Inf-sup stable FEM applied to time-dependent incompressible Navier--Stokes flows are considered. The focus lies on robust estimates for the kinetic and dissipation energies in a twofold sense. Firstly, pressure-robustness ensures the fulfilment of a fundamental invariance principle and velocity error estimates are not corrupted by the pressure approximability. Secondly, Re-semi-robustness means that constants appearing on the right-hand side of kinetic and dissipation energy error estimates (including Gronwall constants) do not explicitly depend on the Reynolds number. Such estimates rely on an essential regularity assumption for the gradient of the velocity, which is discussed in detail. In the sense of best practice, we review and establish pressure- and Re-semi-robust estimates for pointwise divergence-free H1-conforming FEM (like Scott--Vogelius pairs or certain isogeometric based FEM) and pointwise divergence-free H(div)-conforming discontinuous Galerkin FEM. For convection-dominated problems, the latter naturally includes an upwind stabilisation for the velocity which is not gradient-based
    • ā€¦
    corecore