190 research outputs found
Low-Threshold AlGaN-based UVB VCSELs enabled by post-growth cavity detuning
The performance of vertical-cavity surface-emitting lasers (VCSELs) is strongly dependent on the spectral detuning between the gain peak and the resonance wavelength. Here, we use angle-resolved photoluminescence spectroscopy to investigate the emission properties of AlGaN-based VCSELs emitting in the ultraviolet-B spectral range with different detuning between the photoluminescence peak of the quantum-wells and the resonance wavelength. Accurate setting of the cavity length, and thereby the resonance wavelength, is accomplished by using doping-selective electrochemical etching of AlGaN sacrificial layers for substrate removal combined with deposition of dielectric spacer layers. By matching the resonance wavelength to the quantum-wells photoluminescence peak, a threshold power density of 0.4 MW/cm2 was achieved, and this was possible only for smooth etched surfaces with a root mean square roughness below 2 nm. These results demonstrate the importance of accurate cavity length control and surface smoothness to achieve low-Threshold AlGaN-based ultraviolet VCSELs
Calculated Epithelial/Absorbed Power Density for Exposure from Antennas at 10–90 GHz: Intercomparison Study Using a Planar Skin Model
International audienceInternational organizations have collaborated to revise standards and guidelines for human protection from exposure to electromagnetic fields. In the frequency range of 6-300 GHz, the permissible spatially averaged epithelial/absorbed power density, which is primarily derived from thermal modeling, is considered as the basic restriction. However, for the averaging methods of the epithelial/absorbed power density inside human tissues, only a few groups have presented calculated results obtained using different exposure conditions and numerical methods. Because experimental validation is extremely difficult in this frequency range, this paper presents the first intercomparison study of the calculated epithelial/absorbed power density inside a human body model exposed to different frequency sources ranging from 10-90 GHz. This intercomparison aims to clarify the difference in the calculated results caused by different numerical electromagnetic methods in dosimetry analysis from 11 research groups using planar skin models. To reduce the comparison variances caused by various key parameters, computational conditions (e.g., the antenna type, dimensions, and dielectric properties of the skin models) were unified. The results indicate that the maximum relative standard deviation (RSD) of the peak spatially averaged epithelial/absorbed power densities for one- and three-layer skin models are less than 17.49% and 17.39%, respectively, when using a dipole antenna as the exposure source. For the dipole array antenna, the corresponding maximum RSD increases to 32.49% and 42.55%, respectively. Under the considered exposure scenarios, the RSD in the spatially averaged epithelial/absorbed power densities decrease from 42.55% to 16.7% when the frequency is increased from 10-90 GHz. Furthermore, the deviation from the two equations recommended by the exposure guidelines for deriving the spatially averaged epithelial/absorptive power density is mostly within 1 dB. The fair agreement in the intercomparison results demonstrates that the variances of the spatially averaged epithelial/absorbed power densities calculated using planar skin models are marginal
The full-scale avalanche test site, Lautaret, France
The Lautaret full-scale avalanche test site in the southern French Alps has been used by IRSTEA (Cemagref) Research Institute since 1973. Over the recent years two avalanche paths are used to release small to medium avalanches 3 or 4 times each winter. Avalanche flows are generally dense, whether wet or dry, sometimes with a powder part. Main path n°2 (track length 800 m) is dedicated to avalanche dynamics. Within the flow of the avalanche, flow height and vertical profiles of pressure and velocity are measured along a 3.5 m tripod. The snow volume released in the starting zone is quantified by a differential analysis of laser scanning measurements set before and after triggering. A high rate positioning of the avalanche along the track is determined from terrestrial oblique photogrammetry. Above the dense layer, the saltation layer and the powder part are characterized by particles and air fluxes measurements. In path n°1 smaller in size, medium-size avalanches (track length 500 m) make this track of particular interest for experiments on structures. A macroscopic sensor-structure is set nearly 150 m downhill from the starting zone, that is, in the area where avalanches generally reach their maximum velocity. It consists is a one square-meter plate supported by a 3.5 m high steel cantilever fixed in the ground, facing the avalanche. Impact pressures are reconstructed from the cantilever deformations, while avalanche velocity is measured from optical sensors. Seismic signals generated by avalanches of those 2 paths are recorded by a 3-axial broadband seismometer. Around those experimental devices dedicated to the understanding of avalanche physics, a national and international partnership has been developed from years to years, including INSA de Lyon, CNRS and Université Joseph Fourier (France), Aalto University (Finland), Nagoya University (Japan), Boku University (Austria), IGEMA (Bolivia), OGS (Italy)PublishedGrenoble, France3.8. Geofisica per l'ambienteope
Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium.
BACKGROUND: Invasive fungal diseases (IFDs) remain important causes of morbidity and mortality. The consensus definitions of the Infectious Diseases Group of the European Organization for Research and Treatment of Cancer and the Mycoses Study Group have been of immense value to researchers who conduct clinical trials of antifungals, assess diagnostic tests, and undertake epidemiologic studies. However, their utility has not extended beyond patients with cancer or recipients of stem cell or solid organ transplants. With newer diagnostic techniques available, it was clear that an update of these definitions was essential. METHODS: To achieve this, 10 working groups looked closely at imaging, laboratory diagnosis, and special populations at risk of IFD. A final version of the manuscript was agreed upon after the groups' findings were presented at a scientific symposium and after a 3-month period for public comment. There were several rounds of discussion before a final version of the manuscript was approved. RESULTS: There is no change in the classifications of "proven," "probable," and "possible" IFD, although the definition of "probable" has been expanded and the scope of the category "possible" has been diminished. The category of proven IFD can apply to any patient, regardless of whether the patient is immunocompromised. The probable and possible categories are proposed for immunocompromised patients only, except for endemic mycoses. CONCLUSIONS: These updated definitions of IFDs should prove applicable in clinical, diagnostic, and epidemiologic research of a broader range of patients at high-risk
Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge
Automatic detection of pulmonary nodules in thoracic computed tomography (CT) scans has been an active area of research for the last two decades. However, there have only been few studies that provide a comparative performance evaluation of different systems on a common database. We have therefore set up the LUNA16 challenge, an objective evaluation framework for automatic nodule detection algorithms using the largest publicly available reference database of chest CT scans, the LIDC-IDRI data set. In LUNA16, participants develop their algorithm and upload their predictions on 888 CT scans in one of the two tracks: 1) the complete nodule detection track where a complete CAD system should be developed, or 2) the false positive reduction track where a provided set of nodule candidates should be classified. This paper describes the setup of LUNA16 and presents the results of the challenge so far. Moreover, the impact of combining individual systems on the detection performance was also investigated. It was observed that the leading solutions employed convolutional networks and used the provided set of nodule candidates. The combination of these solutions achieved an excellent sensitivity of over 95% at fewer than 1.0 false positives per scan. This highlights the potential of combining algorithms to improve the detection performance. Our observer study with four expert readers has shown that the best system detects nodules that were missed by expert readers who originally annotated the LIDC-IDRI data. We released this set of additional nodules for further development of CAD systems
Non-invasive cardiac assessment in high risk patients (The GROUND study): rationale, objectives and design of a multi-center randomized controlled clinical trial
Background: Peripheral arterial disease (PAD) is a common disease associated with a considerably increased risk of future cardiovascular events and most of these patients will die from coronary artery disease (CAD). Screening for silent CAD has become an option with recent non-invasive developments in CT (computed tomography)-angiography and MR (magnetic resonance) stress testing. Screening in combination with more aggressive treatment may improve prognosis. Therefore we propose to study whether a cardiac imaging algorithm, using non-invasive imaging techniques followed by treatment will reduce the risk of cardiovascular disease in PAD patients free from cardiac symptoms. Design: The GROUND study is designed as a prospective, multi-center, randomized clinical trial. Patients with peripheral arterial disease, but without symptomatic cardiac disease will be asked to participate. All patients receive a proper risk factor management before randomization. Half of the recruited patients will enter the 'control group' and only undergo CT calcium scoring. The other half of the recruited patients (index group) will undergo the non invasive cardiac imaging algorithm followed by evidence-based treatment. First, patients are submitted to CT calcium scoring and CT angiography. Patients with a left main (or equivalent) coronary artery stenosis of > 50% on CT will be referred to a cardiologist without further imaging. All other patients in this group will undergo dobutamine stress magnetic resonance (DSMR) testing. Patients with a DSMR positive for ischemia will also be referred to a cardiologist. These patients are candidates for conventional coronary angiography and cardiac interventions (coronary artery bypass grafting (CABG) or percutaneous cardiac interventions (PCI)), if indicated. All participants of the trial will enter a 5 year follow up period for the occurrence of cardiovascular events. Sequential interim analysis will take place. Based on sample size calculations about 1200 patients are needed to detect a 24% reduction in primary outcome. Implications: The GROUND study will provide insight into the question whether non-invasive cardiac imaging reduces the risk of cardiovascular events in patients with peripheral arterial disease, but without symptoms of coronary artery disease. Trial registration: Clinicaltrials.gov NCT0018911
Heterozygous Variants in MYH10 Associated with Neurodevelopmental Disorders and Congenital Anomalies with Evidence for Primary Cilia-Dependent Defects in Hedgehog Signaling
PURPOSE: Nonmuscle myosin II complexes are master regulators of actin dynamics that play essential roles during embryogenesis with vertebrates possessing 3 nonmuscle myosin II heavy chain genes, MYH9, MYH10, and MYH14. As opposed to MYH9 and MYH14, no recognizable disorder has been associated with MYH10. We sought to define the clinical characteristics and molecular mechanism of a novel autosomal dominant disorder related to MYH10.
METHODS: An international collaboration identified the patient cohort. CAS9-mediated knockout cell models were used to explore the mechanism of disease pathogenesis.
RESULTS: We identified a cohort of 16 individuals with heterozygous MYH10 variants presenting with a broad spectrum of neurodevelopmental disorders and variable congenital anomalies that affect most organ systems and were recapitulated in animal models of altered MYH10 activity. Variants were typically de novo missense changes with clustering observed in the motor domain. MYH10 knockout cells showed defects in primary ciliogenesis and reduced ciliary length with impaired Hedgehog signaling. MYH10 variant overexpression produced a dominant-negative effect on ciliary length.
CONCLUSION: These data presented a novel genetic cause of isolated and syndromic neurodevelopmental disorders related to heterozygous variants in the MYH10 gene with implications for disrupted primary cilia length control and altered Hedgehog signaling in disease pathogenesis
- …