1,377 research outputs found

    Parametric Model of Head Related Transfer Functions Based on Systematic Movements of Poles and Zeros with Sound Location for Pole/Zero Models

    Get PDF
    Directional transfer functions (DTFs), the directional components of the Head Related Transfer Functions (HRTFs), are generally measured at finite locations in azimuth and elevation. Thus models are needed to synthesize DTFs at finer spatial resolution than the measured data to create complete virtual auditory displays. In this research, minimum-phase all-pole and all-zero models were used for modeling both human and cat DTFs. Real cepstrum analysis has been used to represent minimum phase HRTFs in the time domain. For the human DTFs, model orders were chosen to achieve specific objective error criteria published in previous studies that were based on subjective listening tests. Because subjective listening tests are not always feasible in animals, objective methods must be used to assess the quality of the DTF reconstructions. The same error criteria reported in subjective tests of human DTF reconstructions was used to constrain models of cat DTFs on the assumption that if humans cannot discriminate reconstructed vs empirical DTFs for a given objective reconstruction error criteria, then cats won\u27t be able to either. All-pole and all-zero models of orders as low as 25 were able to model DTFs with errors comparable to previous research findings and preserve the main spectral features in both human and cat DTFs. A hypothesis that a systematic relation (i.e., parametric equations) can be found to describe the movements of the poles/zeros of the successful models with the change in sound source location was tested. Polynomials of different orders were extracted to describe the movements of the poles in all-pole models and zeros in all-zero models with the change in sound source location. The reconstructed DTFs were compared to the measured ones of same locations. The reconstructed DTFs preserved the main shape of the spectra, provided satisfactory RMS errors compared to the measured ones and accurately preserved the first notch spectral feature

    A reduced-reference perceptual image and video quality metric based on edge preservation

    Get PDF
    In image and video compression and transmission, it is important to rely on an objective image/video quality metric which accurately represents the subjective quality of processed images and video sequences. In some scenarios, it is also important to evaluate the quality of the received video sequence with minimal reference to the transmitted one. For instance, for quality improvement of video transmission through closed-loop optimisation, the video quality measure can be evaluated at the receiver and provided as feedback information to the system controller. The original image/video sequence-prior to compression and transmission-is not usually available at the receiver side, and it is important to rely at the receiver side on an objective video quality metric that does not need reference or needs minimal reference to the original video sequence. The observation that the human eye is very sensitive to edge and contour information of an image underpins the proposal of our reduced reference (RR) quality metric, which compares edge information between the distorted and the original image. Results highlight that the metric correlates well with subjective observations, also in comparison with commonly used full-reference metrics and with a state-of-the-art RR metric. © 2012 Martini et al

    Effects of temperature-dependent viscosity variation on entropy generation, heat and fluid flow through a porous-saturated duct of rectangular cross-section

    Get PDF
    Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford, is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Péclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case

    Towards engineering heart tissues from bioprinted cardiac spheroids.

    Full text link
    Currentin vivoandin vitromodels fail to accurately recapitulate the human heart microenvironment for biomedical applications. This study explores the use of cardiac spheroids (CSs) to biofabricate advancedin vitromodels of the human heart. CSs were created from human cardiac myocytes, fibroblasts and endothelial cells (ECs), mixed within optimal alginate/gelatin hydrogels and then bioprinted on a microelectrode plate for drug testing. Bioprinted CSs maintained their structure and viability for at least 30 d after printing. Vascular endothelial growth factor (VEGF) promoted EC branching from CSs within hydrogels. Alginate/gelatin-based hydrogels enabled spheroids fusion, which was further facilitated by addition of VEGF. Bioprinted CSs contracted spontaneously and under stimulation, allowing to record contractile and electrical signals on the microelectrode plates for industrial applications. Taken together, our findings indicate that bioprinted CSs can be used to biofabricate human heart tissues for long termin vitrotesting. This has the potential to be used to study biochemical, physiological and pharmacological features of human heart tissue

    Propagation of Respiratory Aerosols by the Vuvuzela

    Get PDF
    Vuvuzelas, the plastic blowing horns used by sports fans, recently achieved international recognition during the FIFA World Cup soccer tournament in South Africa. We hypothesised that vuvuzelas might facilitate the generation and dissemination of respiratory aerosols. To investigate the quantity and size of aerosols emitted when the instrument is played, eight healthy volunteers were asked to blow a vuvuzela. For each individual the concentration of particles in expelled air was measured using a six channel laser particle counter and the duration of blowing and velocity of air leaving the vuvuzela were recorded. To allow comparison with other activities undertaken at sports events each individual was also asked to shout and the measurements were repeated while using a paper cone to confine the exhaled air. Triplicate measurements were taken for each individual. The mean peak particle counts were 658×103 per litre for the vuvuzela and 3.7×103 per litre for shouting, representing a mean log10 difference of 2.20 (95% CI: 2.03,2.36; p<0.001). The majority (>97%) of particles captured from either the vuvuzela or shouting were between 0.5 and 5 microns in diameter. Mean peak airflows recorded for the vuvuzela and shouting were 6.1 and 1.8 litres per second respectively. We conclude that plastic blowing horns (vuvuzelas) have the capacity to propel extremely large numbers of aerosols into the atmosphere of a size able to penetrate the lower lung. Some respiratory pathogens are spread via contaminated aerosols emitted by infected persons. Further investigation is required to assess the potential of the vuvuzela to contribute to the transmission of aerosol borne diseases. We recommend, as a precautionary measure, that people with respiratory infections should be advised not to blow their vuvuzela in enclosed spaces and where there is a risk of infecting others

    Global Research Priorities to Better Understand the Burden of Iatrogenic Harm in Primary Care: An International Delphi Exercise

    Get PDF
    There is a need to identify and reach agreement on key foci for patient safety research in primary care contexts and understand how these priorities differ between low-, middle-, and high-income settings. We conducted a modified Delphi exercise, which was distributed to an international panel of experts in patient safety and primary care. Family practice and pharmacy were considered the main contexts on which to focus attention in order to advance patient safety in primary care across all income categories. Other clinical contexts prioritised included community midwifery and nursing in low-income countries and care homes in high-income countries. The sources of patient safety incidents requiring further study across all economic settings that were identified were communication between health care professionals and with patients, teamwork within the health care team, laboratory and diagnostic imaging investigations, issues relating to data management, transitions between different care settings, and chart/patient record com- pleteness. This work lays the foundation for a range of research initiatives that aim to promote a more comprehensive appreciation of the burden of unsafe primary care, develop understanding of the main areas of risk, and identify interventions that can enhance the safety of primary care provision internationall

    Challenges to and the future of medication safety in Saudi Arabia:A qualitative study

    Get PDF
    AbstractBackgroundMedication safety is a global concern among healthcare providers. However, the challenges to and the future of medication safety in Saudi Arabia have not been explored.ObjectivesWe explored the perspectives of healthcare practitioners on current issues about medication safety in hospitals and community settings in Saudi Arabia in order to identify challenges to improving it and explore the future of medication safety practice.MethodsA total of 65 physicians, pharmacists, academics and nurses attended a one-day meeting in March 2010, designed especially for the purpose of this study. The participants were divided into nine round-table discussion sessions. Three major themes were explored in these sessions, including: major factors contributing to medication safety problems, challenges to improving medication safety practice, and participants’ suggestions for improving medication safety. The round-table discussion sessions were videotaped and transcribed verbatim and analyzed by two independent researchers.ResultsThe round-table discussions revealed that major factors contributing to medication safety problems included unrestricted public access to medications from various hospitals and community pharmacies, communication gaps between healthcare institutions, limited use of important technologies such as computerized provider order entry, and the lack of medication safety programs in hospitals. Challenges to current medication safety practice identified by participants included underreporting of medication errors and adverse drug reactions, multilingualism and differing backgrounds of healthcare professionals, lack of communication between healthcare providers and patients, and high workloads. Suggestions for improving medication safety practices in Saudi Arabia included continuous education for healthcare professionals and competency assessment focusing on medication safety, development of a culture that encourages medication error and adverse drug reactions reporting, use of technology proven to decrease medication errors, and promotion and implementation of national patient safety initiatives.ConclusionsHealthcare professionals have identified major challenges and opportunities for medication safety in Saudi Arabia. Policy makers and practitioners should consider these factors when designing future programs aimed at improving the safe use of medications

    Actigraphy in Human African Trypanosomiasis as a Tool for Objective Clinical Evaluation and Monitoring: A Pilot Study

    Get PDF
    The clinical picture of the parasitic disease human African trypanosomiasis (HAT, also called sleeping sickness) is dominated by sleep alterations. We here used actigraphy to evaluate patients affected by the Gambiense form of HAT. Actigraphy is based on the use of battery-run, wrist-worn devices similar to watches, widely used in middle-high income countries for ambulatory monitoring of sleep disturbances. This pilot study was motivated by the fact that the use of polysomnography, which is the gold standard technology for the evaluation of sleep disorders and has greatly contributed to the objective identification of signs of disease in HAT, faces tangible challenges in resource-limited countries where the disease is endemic. We here show that actigraphy provides objective data on the severity of sleep-wake disturbances that characterize HAT. This technique, which does not disturb the patient's routine activities and can be applied at home, could therefore represent an interesting, non-invasive tool for objective HAT clinical assessment and long-term monitoring under field conditions. The use of this method could provide an adjunct marker of HAT severity and for treatment follow-up, or be evaluated in combination with other disease biomarkers in body fluids that are currently under investigation in many laboratories
    • …
    corecore