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ABSTRACT 

Directional transfer functions (DTFs), the directional components of the Head Related 

Transfer Functions (HRTFs), are generally measured at finite locations in azimuth and 

elevation. Thus models are needed to synthesize DTFs at finer spatial resolution than the 

measured data to create complete virtual auditory displays. In this research, minimum-

phase all-pole and all-zero models were used for modeling both human and cat DTFs. 

Real cepstrum analysis has been used to represent minimum phase HRTFs in the time 

domain. For the human DTFs, model orders were chosen to achieve specific objective 

error criteria published in previous studies that were based on subjective listening tests. 

Because subjective listening tests are not always feasible in animals, objective methods 

must be used to assess the quality of the DTF reconstructions.  The same error criteria 

reported in subjective tests of human DTF reconstructions was used to constrain models 

of cat DTFs on the assumption that if humans cannot discriminate reconstructed vs 

empirical DTFs for a given objective reconstruction error criteria, then cats won’t be able 

to either. All-pole and all-zero models of orders as low as 25 were able to model DTFs 

with errors comparable to previous research findings and preserve the main spectral 

features in both human and cat DTFs.  



 

iii 

 

A hypothesis that a systematic relation (i.e., parametric equations) can be found to 

describe the movements of the poles/zeros of the successful models with the change in 

sound source location was tested. Polynomials of different orders were extracted to 

describe the movements of the poles in all-pole models and zeros in all-zero models with 

the change in sound source location. The reconstructed DTFs were compared to the 

measured ones of same locations. The reconstructed DTFs preserved the main shape of 

the spectra, provided satisfactory RMS errors compared to the measured ones and 

accurately preserved the first notch spectral feature.  
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Chapter 1 

INTRODUCTION 

1.1 Background 

The main acoustic cues for sound localization by humans and animals are the interaural 

time difference (ITD), interaural level difference (ILD) and the monaural spectral cues 

(Searle et al., 1976). The first two are “binaural” cues and generated by spatial separation 

of the ears on both sides of the head (Rayleigh, 1907). The monaural spectral cues, which 

have been shown to be important in resolving the ambiguity of sound source localization 

(SSL) when described only by the duplex theory (Rayleigh, 1907) especially on the cone 

of confusion (see Figure 1), are generated by the spatial- and frequency-dependent 

filtering or interaction of the propagating sound waves by the external ears, head, 

shoulders and the torso (e.g., Musicant et al., 1990, Blauert, 1997; Rice et al., 1992). 

These acoustic transformations can be captured in measurements of the Head Related 

Transfer Function (HRTF), defined as the complex ratio of the spectrum at the ear drum 

to the spectrum of the sound source. The left and right ear pair of HRTFs comprises all 

acoustical cues to sound source location available from that location (e.g., Blauert, 1969; 

Middlebrooks, 1992). Figure 1.2 shows examples of measured HRTFs from human SOW-

L-ear data of location given by azimuth and elevation angle (az=-40°,el=0°) and cat 

1107-R-ear data of location (az=0°,el=-30°).    
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Figure 1.1. An illustration of cone of confusion. All points on the cone that have the same 
distance from the cone’s vertex have the same ITD and ILD on both ears.  
 

 
(a) 

 
(b) 

Figure 1.2. Measured HRTFs for (a) human SOW-L-ear data of location (az=-40°,el=0°) 
and (b) cat 1107-R-ear data of location (az=0°,el=-30°).    
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Because of their dependence on shape and geometry of the head, external ears, and body 

parts that interact with the received sound waves, HRTFs can be quite different for 

different individuals for a given location in space (Shaw, 1982; Wenzel et al., 1993; 

Langendijk and Bronkhorst, 2002; Middlebrooks, 1999; Jin et al., 2000).  

 

HRTFs can be used to create virtual auditory displays (VADs) by presenting over 

headphones arbitrary sounds that have been filtered with a left and right ear pair of 

HRTFs to artificially recreate at the eardrums the appropriate spectral and temporal cues 

for a sound source in any direction. When this is done properly, the sound pressure waves 

presented at the two ears over headphones are virtually identical to those that would have 

been present if the same sound was presented from a loudspeaker at the desired location.  

Modeling HRTFs or directional transfer functions (DTFs), the directional components of 

the HRTFs, is important in many applications. For example, physiological studies using 

stimuli processed through HRTFs have lead to important insights into the functioning of 

the auditory nervous system (Tollin and Yin, 2002; Chase and Young, 2006). Behavioral 

studies in animals using HRTF-filtered stimuli have also been conducted (Poganiatz et 

al., 2001).  

 

But arguably the most major limitation in current HRTF measurement and virtual 

acoustical display (VAD) implementation schemes concerns the resolution of spatial 

sampling during the empirical measurement of the HRTFs. Very high spatial resolution is 

required for simulating reverberation, sound source motion, and when the observer is able 
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to move interactively relative to the virtual sources. The ability to interact behaviorally in 

VADs continues to be a major area of auditory research. The clear advantage of simple 

pole/zero models (or any parametric model) of HRTFs is that the huge database of all 

possible left and right ear HRTFs does not need to be physically stored in memory and 

retrieved as needed (i.e., a look-up table) to implement the VAD; but rather the filters can 

be created in real time by simply inputting the desired source azimuth and elevation. 

(Otani and Ise, 2006) have shown that a hard drive space of approximately 450 GB is 

needed to store HRTFs measured with 43Hz increments and with calculation of up to 

12KHz. So, if HRTFs can be rapidly recreated from a limited number of empirical 

measurements, not only can reconstruction of natural sound source and observer 

movements be realized (Nishino et al., 1999), but also data reduction can be achieved. 

VADs are currently used in psychoacoustic and physiological research, industry, some 

medical applications, military simulations, and for entertainment. Moreover, one of the 

features that has been studied to be restored in the hearing aids is the ability to improve 

directional hearing in individuals wearing hearing aids by finding the ratio of the unaided 

head related transfer function to the aided head related transfer function and then 

designing a hearing aid filter that is the inverse of that derived insertion effect (Soli et al., 

1994). So, finding relations between the sound source direction movement and the 

change in the modeled HRTFs will simplify the needed design for this hearing aid filter 

to restore the directional hearing to a wearer of a hearing aid.   

 

 



 

5 

 

1.2   Statement of The Problem and Purpose of The Study 

The empirical HRTFs necessary for VADs are generally measured at a limited number of 

finite source locations with a constant distance from the center of the head.  Therefore, 

for full implementation of a complete VAD, efficient models, or interpolation, are 

required to synthesize HRTFs from locations not measured empirically and at finer 

resolution than the measured data. 

The purpose of this study is divided into two parts. The first one is to find suitable low-

order models for the HRTFs according to several error criteria. The models are of two 

types, Finite Impulse Response (FIR) filters and Infinite Impulse Response (IIR) filters.  

The modeling will seek the lowest possible order to keep the model simple and accurately 

preserve the main direction-dependent peaks and valleys in the measured spectra, but not 

to over fit the HRTFs in a way to follow noise in the measured data.  The second part is 

to test the hypothesis that a systematic relation (i.e., parametric equations) can be found 

to describe the movements of the poles/zeros of the successful pole-zero models with the 

change in the sound source location (in elevation or azimuth angle) which can reduce the 

whole set of HRTFs to a small number of parametric equations describing the trajectory 

of the poles and zeros with changes in spatial location. 

 

1.3 Literature Review 

1.3.1 HRTF/DTF modeling 

As with any transfer function, in order to have an accurate description of the HRTFs or 

the DTFs, we need to specify both its magnitude spectrum and its phase spectrum 



 

6 

 

independently (Oppenheim and Schafer, 1989). Studies have shown, however, that 

HRTFs or DTFs can be accurately modeled by just their minimum phase spectra because 

the auditory system is not sensitive to the absolute phase of a sound presented to a single 

ear (Kulkarni et al., 1999; Kistler and Wightman, 1992). That is why most empirical 

experiments on human HRTFs focused on the magnitude components in their research 

(Mehrgardt and Mellert, 1977; Midllebrooks et al., 1989; Shaw, 1974; Wightman and 

Kistler, 1989a). To preserve the ITD cues (given by the left- and right-ear phase 

difference spectra, which humans are very sensitive to) for any location, the phase 

difference can first be computed from the empirical impulse responses before applying 

the minimum phase transformation, and then added back to the magnitude of the modeled 

HRTFs as a real time delay (Kulkarni et al., 1999). The energy in minimum-phase 

systems is optimally concentrated in the beginning of the impulse response which allows 

for shortest filter lengths for a specific amplitude response (Huopaniemi et al., 1999) and 

that is another attraction of minimum phase systems, in general. For these reasons, here, 

only the magnitude spectra of the DTFs are modeled. 

 

DTFs have been preferred to be modeled and then added to the common part of all 

HRTFs over modeling the complete HRTFs at once for many reasons.  For example, 

(Kulkarni and Colburn, 2004) proposed that it is better to have a fixed response of a 

direction-independent transfer function in series with the direction-dependent filters that 

model the DTFs. It has been also shown that it is most efficient for both storage and 

computation to process stimuli through desired DTFs and then through a common filter 
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stage characterizing the mean direction-independent function (which captures the 

resonances of the ear canal) because of lower-order approximations needed to 

successfully model DTFs compared to the ones needed for HRTFs (Haneda et al., 1999; 

Kulkarni and Colburn, 2004). Moreover, DTFs remove the small variations in the probe 

tube microphone placement in the ear canal during HRTF data acquisition. 

 

Several different techniques have been used by researchers to model HRTFs/DTFs. For 

example, (Kistler and Wightman, 1992; Martens, 1987; Jin et al., 2000; Langendijk and 

Bronkhorst, 1997) used models based on principal components analysis (PCA). (Kistler 

and Wightman, 1992) reconstructed DTFs from linear combination of principal 

components and then added the common part to form the reconstructed HRTF and 

showed that HRTFs (reconstructed DTFs with means added back) can be adequately 

approximated by a linear combination of as few as five basis functions (eg, 5 different 

spectral shapes). (Brown and Duda, 1998; Lopez-Poveda and Meddis, 1996) used 

structural models that analyze the sound waves propagation and diffraction from the 

sound source to the ear drum.  

 

Methods based on interpolation in the time and/or frequency domains have also been 

used. Pole/zero approximations have been widely used also for HRTFs modeling 

(Blommer and Wakefield 1997; Haneda et al. 1999; Kulkarni and Colburn, 2004; Raykar 

et al., 2005; Asano et al., 1990; Durant and Wakefield, 2002). Finite impulse (FIR) and/or 

infinite impulse (IIR) response filters with different orders have been used. Despite the 
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fact that IIR filters are more complicated to implement on digital signal processors 

compared to FIR, or all-zero models, they have been shown to represent transfer 

functions with lower orders, or fewer parameters (Lyons, 1997; Oppenheim and Schafer, 

1989). All-pole models seem to better approximate peaks than nulls in the DTFs 

(Kulkarni and Colburn, 2004; Raykar et al., 2005, Carlile, 1996). On the other hand, all-

zero model is an efficient choice for representing HRTFs with deep valleys, but not those 

with sharp peaks (Carlile, 1996). (Blommer and Wakefield, 1997) have shown that 

combined pole-zero approximations can be used to synthesize HRTFs with even fewer 

total parameters than is typically achieved by all-zero approximations. On the other hand, 

all-zero models have been chosen for HRTF implementation due to straightforward 

interpolation, relatively good spectral performance, simplicity of implementation 

(Huopaniemi et al., 1999), and for being always stable. It should be mentioned though 

that both all-pole and all-zero models used in this work are stable since only minimum-

phase filters are used as HRTF models (Oppenheim and Schafer, 1989).  

 

IIR filters models have been applied to DTF and HRTF modeling using different 

techniques, such as Yule-Walker methods (Sandvad and Hammershoi, 1994; Jot et al., 

1995), Prony’s method (Sandvad and Hammershoi, 1994; Kulkarni and Colburn, 2004), 

weighted-least-squares Autoregressive Moving Average (ARMA) model (Kulkarni and 

Colburn, 2004; Blommer and Wakefield, 1994), Balanced Model Truncation (Mackenzie 

et al., 1997), and a spherical basis function neural network to approximate the model 

parameters (Jenison, 1995) . (Runkle et al., 1995) used Cepstrum techniques for all-zero 
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approximations to model HRTFs. (Haneda et al., 1999; Liu and Hsieh, 2001) represented 

HRTF by a direction-independent part (common acoustical poles) and a direction-

dependent part (all-zero model). In that model, in addition to the fewer parameters that 

will be dependent on the sound source direction using common-acoustical-pole and zero 

modeling of HRTFs, it can also extract even the zeros that are missed in conventional 

pole/zero models due to pole zero cancellation which means that this model can trace 

well the zero variations due to changes in sound source direction (Haneda et al., 1999). 

(Grantham et al., 2005) used the same idea of common poles for the entire set of HRTFs 

and then used a technique based on the singular value decomposition of Head Related 

Impulse Responses (HRIRs) to create the final HRTF model.  (Susnik et al., 2003) 

showed that HRTF could be realized with a simple set of IIR filters, time delay element 

and an amplifier.  

 

1.3.2 Important spectral features of the DTFs for sound source localization - the 

first notch frequency 

It has been shown in previous studies on humans that there are prominent spectral 

“notches” and “peaks” above 4-5 KHz that vary systematically with the changes in 

elevation and azimuth angles of sound source location which are essential for sound 

localization especially for source elevation and for determining whether a sound is in 

front of or behind the observer (Shaw, 1974 and 1982; Shaw and Teranishi, 1968; 

Hebrank and Wright, 1974; Kuhn, 1987; Langendijk and Bronkhorst, 2002; Raykar et al., 

2005). While some notch frequencies vary smoothly with elevation, the spectral peaks do 
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not show this smooth trend (Raykar et al., 2005). It has been also shown that the spectral 

location of the first prominent spectral minima, which is known in the literature as the 

First Notch (FN), changes in frequency from low (~6 kHz) to high (~12 kHz) as the angle 

of sound source varies from -15° to 45° in elevation with fixed azimuth angle in human 

data (Shaw, 1982; Shaw & Teranishi, 1968; Langendijk and Bronkhorst, 2002). Similar 

behavior of spectral notch movement with the change in elevation angles have been 

shown in measurements in animals commonly used in anatomical and neuro-

physiological studies, including cats (Musicant et al., 1990; Rice et al., 1992; Tollin and 

Koka, 2009; Young et al., 1992), gerbils (Maki and Furukawa, 2005), monkey (Spezio et 

al., 2000), and rats (Koka et al., 2008) with a difference in the change in the frequency 

range of the FN due to the difference in the size and the shape of different species. Cats 

are often used in studies of localization and are ideal models for this purpose because of 

their ability to localize sound source accurately and quickly with a performance close to 

humans (e.g., Tollin et al., 2005; May and Huang, 1996). Behavioral studies suggest that 

cats use spectral cues for sound localization (Casseday and Neff, 1973; Aitkin and 

Martin, 1987; Aitkin and Martin, 1990).   

 

 In cats, the FN changes from about 8 to 18 kHz with the change in elevation from low to 

high, with similar behavior as the sound source is moved laterally from the midline in the 

azimuth with fixed elevation (Musicant et al., 1990; Rice et al., 1992). The frequency 

shift of this notch is greater for angular displacement in elevation (EL) compared to that 

occurs in azimuth (AZ) and the notch becomes broader and shallower above 54º EL and 
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becomes less distinct as azimuth shifts more laterally (Musicant et al., 1990; Rice et al., 

1992). (Huang and May, 1996) suggested that the mid-frequency region in cats’ HRTF 

(5-18 KHz), which is the region that the FN occurs in, is the region that sound 

localization cues are derived from and that the spectral notches play an important role in 

it.  In behavioral experiments in cats, Tollin and Yin (2003) showed that cats actually do 

rely on the FN frequency to localize sound sources that vary in elevation.  (Musicant et 

al., 1990) indicated that pinna is essential for the presence of the notches at lower 

frequencies and it alters the notches at high frequencies. (Tetsufumi, et al., 2000) showed 

that this FN, which is regarded as an important localization cue (Rice et al., 1992), is 

diminished when subject's pinnae are covered with silicone putty. (Brown and Duda, 

1998) mentioned that the pinna is very important for elevation estimation in addition to 

providing some azimuth information.  

 

 Rice and his colleagues (1992) mentioned that depending on the systematic movement of 

the FN with the change in sound source location, there will be an ambiguity if FN is used 

alone for localization because both increases in elevation and increases in azimuth cause 

the FN to move to a higher frequency. They also mentioned that this ambiguity can be 

resolved by information from the frequency regions outside the frequency range that the 

FN is observed and it can be also resolved by a knowledge of the FN frequency in the 

contra-lateral ear and referred to a localization scheme based on knowledge of FN 

frequencies in the two ears as the binaural FN direction code. 
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1.3.3 HRTF interpolation and reconstruction 

Several techniques have been investigated or proposed by researchers for HRTF 

interpolation or reconstruction at unmeasured locations and at finer resolution compared 

to the measurement experiments. Wenzel and Foster (1993) compared three subjects' 

localization judgments for stimuli synthesized from non-interpolated HRTFs, simple 

linear interpolations of the empirical HRTFs, stimuli synthesized from non-interpolated 

minimum-phase approximations of the HRTFs and linear interpolations of the minimum-

phase HRTFs. Two kinds of errors have been considered, small errors on the order of 5° 

to 20° and confusions errors (front positions heard in the rear; down locations heard as 

up. etc.). In general, the overall level of confusions was quite high. In that study, Wenzel 

and Foster mentioned that localization accuracy is largely unaffected by interpolation of 

either normal or minimum-phase HRTFs. The approximated HRTFs using linear 

interpolation from neighboring spatial locations are often acoustically discriminable from 

measured HRTFs at the same location (Kulkarni and Colburn, 1993).  Interpolation in the 

time domain cannot, however, accurately reconstruct the spectral shape corresponding to 

the FN.  For example, a sharp spectral notch cannont be recreated via interpolation of the 

sharp notches at two neighboring locations; interpolation simply results in a less sharp 

notch, which will reduce sound localization accuracy.  

 

The relative performance of interpolation methods of all-zero and pole-zero modeling of 

DTFs has been studied in (Runkle et al., 1995). (Wang et al., 2008) proposed an 

interpolation for HRTF pole-zero models based on all-zero linear interpolation methods. 
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(Martin and McAnally, 2007) proposed an interpolation technique that involves the 

application of an inverse-distance-weighted averaging algorithm to HRTFs represented in 

the frequency domain. (Hacihabiboglu, 2002) presented an HRTF filter interpolation for 

FIR filters with a vectorial zero-displacement measure to synthesize HRTFs at 

unmeasured positions. Zeros interpolation was proposed for all-zero model of 64 zeros 

and has been shown how the general shape of the notches and the peaks can be captured 

(Hacihabiboglu, 2002). (Nishino et al., 1999) evaluated simple linear interpolation and 

Spline interpolation methods for HRTFs in the median plane. Nishino and his colleagues 

(1999) showed that the linear method is more effective when the total number of 

elevations is large and that Spline method is effective when the intervals among 

elevations are large and equivalent. (Cheng and Wakefield, 1999) used a combination of 

HRTFs to derive spatial frequency response surfaces to get interpolated HRTFs. Nishino 

and his colleagues (2007) estimated HRTFs on the horizontal plane by investigating the 

relationship between HRTFs and the physical features of the subject by multiple 

regression analysis. (Zhong and Xie, 2009) proposed a reconstruction relation for HRTFs 

at unmeasured azimuths for a given elevation as a linear combination of weighted 

azimuthal harmonics under the condition of having enough azimuthal measurements. 

 

1.4 Dissertation Organization 

Chapter 2 presents an overview of the used methods in this dissertation. It includes a 

description of the empirical datasets, data processing and pre-conditioning, DTFs 

modeling techniques and models’ validation and evaluation techniques. A brief 
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description of how the effect of the movement of the poles and zeros in the z-plane on the 

DTFs will be studied for the purpose of building the parametric relations that describe 

those movements. 

 

Following Chapter 2, the contents of the dissertation can be divided into two main parts. 

The first part which covers the results of the all-pole and all-zero modeling and the 

models evaluation which are presented in Chapters 3 and 4. The second part of the 

dissertation tests and proves the hypothesis that there is systematic movements of poles 

and zeros of pole-zero models that can be described by parametric relations for those 

poles and zeros in the z-plane as a function of the azimuth and elevation angles. This part 

is covered in Chapter 5. 

 

Chapter 3 presents the results of the modeling techniques, the validation of these models 

and provides a detailed evaluation for the fitted DTFs using some error criteria and 

spectral features preservation testing. An evaluation for the modeled DTFs by comparing 

them to the measured DTFs using Artificial Neural Networks (ANN) is provided in 

Chapter 4. Chapter 4 also introduces using ANN in sound source localization from the 

monaural spectral features of the DTFs. 

  

Chapter 5 shows how DTFs can be rebuilt from extracted parametric equations which 

describe the movement of the poles/zeros in the z-plane with the change in the sound 

source location. A comparison of the reconstructed and the measured DTFs is provided 
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also in Chapter 5. Chapter 6 presents the summary and the conclusions of the work done 

in this dissertation and outlines suggestions for future work.  
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Chapter 2 

METHODOLOGY 

2.1 Spatial Coordinate System for Sound Source Location 

In this study, the coordinate system reference will be as follows. Source elevation 

corresponds to latitude and source azimuth corresponds to longitude where location 

(0°,0°) is directly in front of the subject. Positive elevations are above the horizontal 

plane and negative elevations are below. Directly above the subject’s head is 90° EL. 

Positive azimuths are to the right side of the subject and negative azimuths are to the left.  

 

2.2   Empirical HRTF/DTF Data Sets 

One of the goals of the present study was to determine efficient low-order models for 

animal HRTFs so that these HRTFs could be subsequently used in physiological studies 

and in future psychophysical studies. We use here HRTFs from cats. Since we cannot do 

behavioral tests or behavioral research on cats, DTF models are applied on cats and 

human data in this study. Cats are often used in studies of localization and are ideal 

models for this purpose because of their ability to localize sound source accurately and 

quickly with a performance close to humans (e.g., Tollin et al., 2005; May and Huang, 

1996). Some previous studies suggest that cats use spectral cues for sound localization 

(Tollin and Yin, 2003; Casseday and Neff, 1973; Aitkin and Martin, 1987; Aitkin and 
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Martin, 1990). HRTFs and DTFs datasets used in this study come from two species; 

humans and cats. 

 

2.2.1 Human data  

Human HRTF data were kindly provided by Drs Doris Kistler and Fred Wightman from 

the Department of Psychology at the University of Louisville. These data, which have 

been used in psychophysical sound localization studies (Wightman and Kistler, 1989a 

and 1989b), correspond to subject SDO. In that dataset, HRTFs were measured at 144 

locations with elevation angle ranges from +54º to -36º with 18º step, and azimuth angles 

from +180º to -165º with 15º step and a 256-tap filter at a sampling rate of 50 kHz. The 

second dataset corresponds to subject SOW used in the DTF modeling and 

psychophysical studies of (Kulkarni and Colburn, 2004). The SOW dataset consists of 

measurements at 505 locations with elevation angle ranges from +80° to -50° and 

azimuths angles from +180° to -170° with 10° step in both directions, in addition to a 

measurement from directly above (+90° EL). These data are 256-tap filters at a sampling 

rate of 50 kHz.    

 

2.2.2 Cat data  

One set of cat HRTF data is from “cat 1107” from the study of (Rice et al., 1992), 

provided by Dr Eric Young at Johns Hopkins University. Source positions were 259 

locations in the frontal field, between -75º and 75° AZ.  Another set of cat data was 

provided from one adult cat from the study of Tollin and Koka (2009). This dataset was 
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sampled 3º in vertical steps and 7.5º horizontal steps with a nominal sampling rate of 100 

kHz. This dataset will be referred as “UCHSC dataset” since it has been measured by 

Prof. Daniel Tollin at University of Colorado Health Sciences Center (UCHSC).  

 

2.3   Data Processing and Conditioning  

Signal Processing Toolbox software of Matlab, The Mathworks Inc., has been used for 

signal processing, conditioning, modeling techniques and models evaluation algorithms 

in this project.  

2.3.1   HRTFs to DTFs 

Regardless of the source of the HRTFs used here (cat or human), the data have been 

converted to DTFs (Middlebrooks and Green, 1992) before applying the modeling 

techniques. This has been done by finding the average of the measured HRTFs in 

logarithmic scale in the frequency domain at all locations, then subtracting this average 

from each HRTF at each location in the logarithmic scale, 

                                                                                                                                        (2.1) 

                  

which is equivalent to division in the linear scale. ‘n’ in Equation (2.1) represents the 

number of the measured HRTFs for a certain dataset at one ear.  DTFs isolate the 

direction-dependent compontents of the HRTFs – that is, those components that actually 

change as sound source location is changed. The average, or common component, 

isolated the direction-independent components of the HRTF, such as those due to the 

resonance of the ear canal (which does not depend on source direction) and the spectral 
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consequences of the exact placement of the microphone tip in the ear canal. Figure 2.1 

shows the HRTFs at all 259 locations for one ear of cat 1107 from (Rice et al., 1992) in 

addition to the direction-independent, or the common, component of the ensemble of 

HRTFs.  

 
Figure 2.1. HRTFs at all locations from (Rice et al., 1992) dataset for cat 1107 (right ear) 
in addition to the direction independent, or common, component for this dataset (red 
plusses). 

 

2.3.2  Windowing and filtering  

All DTFs have been windowed using a half Hanning window in order to remove any 

reflection in the impulse response. All DTFs have been also low-pass filtered to remove 

frequencies above 40 KHz for cat data and 20 KHz for human data which are the average 

upper hearing limits for these species. Figure 2.2 shows the Head Related Impulse 

Response (HRIR) from human SDO-L-ear data of location (az=-165°, el=-30°) (solid 

line) in addition to the used half-Hanning window (dotted line).  
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Figure 2.2. Windowing of HRIR from human SDO-L-ear data of location (az=-165°, el=-
30°) (solid line) using half-Hanning window (dotted line).  
 

2.3.3  Minimum-phase DTFs - real Cepstrum 

Real Cepstrum analysis (Oppenheim and Schafer, 1989) has been used to represent the 

minimum phase in time domain for all used DTFs. It is defined as the inverse Fourier 

transform of the magnitude of the Fourier transform, as given in Equation 2.2. Runkle 

and his colleagues (1995) used the Cepstrum technique for all-zero approximation to 

model HRTFs. The resulting minimum-phase sequence is real, causal and stable where 

all poles and zeros are inside the unit circle.   

 

(2.2)                                             

2.3.4   DTFs smoothing  

To ensure low-order filters, DTFs were “smoothed” before applying our modeling 

techniques. It has been shown in previous studies (Kulkarni and Colburn, 1998; 
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Hacihabiboglu et al., 2002) that HRTFs can be smoothed significantly in the frequency 

domain without affecting the perception of sound stimuli filtered by HRTFs. In other 

words, the very fine spectral detail in HRTFs is not important for sound localization as 

long as the major features are preserved (Kulkarni and Colburn, 1998; Jin et al., 2000; 

Asano et al., 1990). Smoothing also simulates the spectral filtering process of the cochlea 

in the peripheral auditory system that eliminates sharp spectral peaks and notches. Some 

researchers used partial Fourier series at different levels to smooth the HRTFs (Kulkarni 

and Colburn, 1998). A bank of triangular band-pass filters which removes details that 

would be excluded by cochlear filtering and give a smoothed version to DTFs is another 

technique that has been used to smooth the HRTFs (Schnupp et al., 2003; Koka et al., 

2008; Tollin and Koka, 2009). 

 

HRTFs also have been successfully smoothed using different methods depending on 

wavelet transforms (Hacihabiboglu et al., 2002; Hacihabiboglu, 2002). Three different 

wavelet-transform methods were used and tested in (Hacihabiboglu et al., 2002): wavelet 

denoising with Stein’s Unbiased Risk Estimation (SURE), wavelet approximation and 

redundant wavelet transform (RWT). Based on Hacihabiboglu  and his colleagues’ 

subjective listening test, they reported in their (2002) paper that wavelet-based spectral 

smoothing methods are beneficial in reducing the filter order by providing better 

localization cues than the direct design. They also mentioned that the RWT technique 

increased the sound localization accuracy without substantially decreasing the sound 

quality and it was also the preferred choice for all of the subjects in terms of the mean 
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localization cues compared to the other wavelet-based smoothing methods. Using that 

technique for smoothing (i.e. RWT), Hacihabiboglu  and his colleagues mentioned that 

even for an IIR filter order as low as 10, the behavioral sound localization performance 

was satisfactorily high (Hacihabiboglu et al., 2002).  

 

In this dissertation, “Symmlet 17” filter bank was applied to the magnitude responses of 

the DTFs using RWT technique, which is also known as Stationary Wavelet Transform 

(SWT) (Mallat, 1998), for spectral smoothing purpose. “Symmlet 17” has been chosen 

after comparing the results of different wavelets including Haar, discrete Meyer, 

Daubechies 2-9, Coiflet 1-5 and Symmlet 1-17 wavelets. Figure 2.3 illustrates a diagram 

of a three-level stationary wavelet transform decomposition, where H and G are wavelet 

basis lowpass and highpass filters.    

                    
 

Figure 2.3. A three level stationary wavelet transform. 
 

In SWT decomposition, the coefficients are not downsampled but the impulse responses 
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coefficient cAj and detail coefficient cDj level j. The coarse and detail coefficients can be 

computed recursively by 

                                               �������� 	 ∑ �� ������� � 2��                             (2.3) 

                                               �������� 	 ∑ �� ������� � 2��                             (2.4) 

Figure 2.4 shows an example of the measured and the smoothed DTFs for cat 1107 

dataset at location (az=0°, el=37.5°) using RWT level 3 “Symmlet 17” filter bank.  

 

Figure 2.4. An example of a RWT smoothed DTF al location (az=0°, el=37.5°) from cat 
1107 dataset using “Symmlet 17” filter bank. 
 

2.4   DTFs Modeling Techniques 

In this study, we will use the pole/zero approximations for modeling because of the 

success of these approximations in modeling HRTFs/ DTFs as reported in previous 

research described earlier. We will model DTFs, not HRTFs, because of the advantages 

mentioned above of modeling DTFs compared to HRTFs. The models used in this work 
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are the ones whose Fourier transforms are minimum-phase where the log-magnitude 

spectrum and phase spectrum are Hilbert transform of each other. Accordingly, the 

minimum-phase system will have a unique phase function if the magnitude function is 

given (Oppenheim and Schafer, 1989; Kulkarni et al., 1999). Minimum-phase modeled 

DTFs have all their poles and zeros within the unit circle which adds the advantage of 

being always stable.   

 

Because some important spectral features of the HRTFs (i.e., notches and peaks) change 

systematically with source location at least over a limited range, using the pole/zero 

approximation is a desirable technique for modeling since these systematic movements 

can be reflected into concomitant tractable movements of the poles and zeros positions in 

the pole/zero complex plane plot of these models. In this study, only all-pole and all-zero 

models were used to fit DTFs in order to avoid any pole zero cancellation that may 

happen in the models that have both poles and zeros combined in one model (Haneda et 

al., 1999). This gives better movement tracing for the direction dependent poles and zeros 

(Hacihabiboglu, 2002) that may accompany the systematic changes in the modeled DTFs 

(i.e. peaks or notches) with the change in the sound source elevation and/or azimuth.  

 

The goal is to find the lowest possible order for all-pole and all-zero models to keep the 

model simple, efficient and accurately preserve the main spectral features of the DTFs, 

such as the direction-dependent peaks and valleys, but not to over fit the DTFs in a way 

to follow noise in the measured data. Finding lower-order models not only reduce the 
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computational complexity, but also simplify the tracking of the changes of the poles and 

zeros locations in pole/zero models with the change in the location of the sound source, 

which is the ultimate purpose of choosing suitable pole/zero models in this project.  

 

Linear Predictor Coefficients (LPC) technique has been used for all-pole models by 

computing the least squares error solution with the autocorrelation method of 

autoregressive modeling to find the model coefficients (Jackson, 1989). The all-zero 

model uses the impulse response of the DTF as its coefficients with a rectangular window 

to truncate the original impulse response and constructed using an FIR filter (Oppenheim 

and Schafer, 1975). These models are used to fit the magnitude spectra.  

 

2.5   Models Validation and Evaluation 

The proposed models used in this project are validated and evaluated based on human 

and cat measured HRTFs/DTFs. Model orders are chosen according to error criteria 

published in previous studies that were supported by human subjective tests, and to the 

ability of these models to preserve the main spectral features that have been proven in 

previous researches as important spectral localization cues. Modeling animal DTFs has 

some limitations because it can be impractical to perceptually validate the modeled DTFs 

using subjective listening tests. Here, we propose to use the models and the associated 

objective error metrics based on human DTF models to constrain the models of cat DTFs. 

It is assumed that as long as the objective (i.e., quantitative) DTF reconstruction errors 

for the cat DTFs are constrained to be at or less than the DTF reconstruction errors 
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known in human listening tests to result in DTF reconstructions that are discriminable 

from empirical DTFs, the cats would also not be able to discriminate the modeled vs. the 

empirical DTFs. It has been shown in this study that this constraint can be met for both 

human and cat DTF models with model orders as low as 25 for all-pole and all-zero 

models. These models were evaluated by comparing the resulting errors to the errors in a 

previous study (Kulkarni and Colburn, 2004) and the effectiveness of these models to 

preserve the main spectral features in the empirical DTFs.   

 

2.5.1 RMS error on a dB log scale 

The modeled DTFs have been compared to the measured ones using the same error 

expression that have been used in (Kulkarni and Colburn, 2004) and computed in decibel 

(dB) scale,   

                 

2/1
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where, )( ωjeH  and )( ωjeH
∧

 represent the measured and the modeled DTFs, respectively.  

One objective criteria used here was that the orders of all-pole or all-zero models were 

chosen to keep the mean error of Equation 2.5 computed across all DTF locations to be 

less than the mean error for human DTF reconstructions that (Kulkarni and Colburn, 

2004) could be discriminated from empirical DTFs in their human psychophysical 

listening tests.  
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2.5.2   Spectral features preservation – the first notch frequency 

It is crucial for any successful model to preserve the spectral features that are known to 

be important for sound localization, such as the first prominent spectral minima, which is 

known in the literature as the First Notch (FN; Rice et al., 1992). Because of the 

importance of the FN as a spectral cue for sound localization, we will test the 

preservation of this notch and its systematic movement with the change in sound source 

location using the proposed models.  To our knowledge, this form of DTF reconstruction 

validation has not been used. We believe this analysis is important because if the 

important features for sound localization are not preserved in the reconstructions, then the 

whole point of the modeling has been defeated because localization errors will be made 

when these DTFs are used to implement a VAD. To test the validity of these models in 

preserving this feature at all locations, the FN frequency was extracted from the measured 

DTFs at all locations and compared to the extracted ones from the modeled DTFs and 

plotted against each other. Regression lines have been drawn for those plots using simple 

linear regression after forcing the regression line to pass through the origin: 

                                                       iii XY εβ +=                                            (2.6) 

where β is the slope of the regression line, the term ε indicates the vertical deviation of a 

particular point from the regression line. The resulting regression lines, the values of the 

regression lines’ slopes and the coefficient of determination, “r2”, values will be tested to 

check the preservation of FN systematic movement. The coefficient of determination is a 

measure of how well the regression line represents the data. The RMS error of Equation 

2.5 does not by itself guarantee that features such as the spectral notches have been 



 

28 

 

preserved. Bootstrap resampling has been applied to the FN frequency of all locations in 

the frontal field to derive confidence intervals for the regression lines’ slopes between the 

FN frequency of the measured DTFs and the ones of the all-pole and all-zero modeled 

DTFs. 

 

2.5.3   Spectral shape comparison – coherence function 

In addition to comparing our modeled DTFs to the measured ones using the error metric 

of equation 2.5 and the FN feature and its systematic movement preservation, the 

coherence between the modeled and the measured DTFs is calculated to compare the 

shape of the spectra between modeled and measured DTFs including all peaks and 

notches in those spectra. The coherence function measures the correlation between two 

signals as a function of the frequency components they contain (Shaw, 1981). For that 

purpose, the Magnitude Squared Coherence (MSC) which is defined in equation 2.7 (Van 

Drongelen, 2006) and uses Welch’s averaged, modified periodogram method (Percival 

and Walden, 1993) will be used: 

                                                     ( )
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where Sxy(ω) is the cross spectral density, and Sxx(ω) and Syy(ω) are the auto spectra of the 

modeled and measured DTFs. MSC estimate is a function of frequency with values 

ranging from 0 to 1 and provides an assessment of the linear relation at each frequency. 

MSC of 1.0 indicates perfect coherence and 0 indicates no coherence. The coherence is 
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estimated practically by averaging over several segments as indicated in Equation 2.8, 

where ‘n’ represents the number of the segments in time domain. 
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The data were divided into 64-point segments for analysis with a 60% overlap of adjacent 

segments using Hamming window. 

 

2.6 Tracking the Systematic Movements of Poles/Zeros With Changes in The Sound 

Source Direction  

To the extent to which the spectral peaks and notches of the DTFs move systematically 

with source location, which they do, the poles and zeros would be expected to also move 

systematically. The effect of the change in pole/zero pairs location on DTF spectra is 

studied to find the pairs that have significant effect on the spectral main features. Those 

pairs are considered the dominant pairs. To initially simplify the tracking of poles and 

zeros, their movements with several elevation angles at fixed source azimuths have been 

tracked and recorded. Then the same procedure has been repeated for several azimuths 

but with fixed source elevations. Poles and zeros movement tracking is performed in the 

2-D polar coordinate system where the change in poles/zeros location will be described 

by an angle (β) and a distance (r) (i.e., a vector), as shown in Figure 2.5.  
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Figure 2.5. An illustration of the angle and distance of the used polar coordinate system 

for tracking the movements of poles/zeros in the z-plane.  
 

The observations of the relations between the locations of the poles/zeros in the complex 

z-plane and the spectra of the modeled DTFs have been used to track the systematic 

movement of the poles/zeros with the change in the magnitude frequency response as a 

function of the sound source location (azimuth and/or elevation angle). The contribution 

of each pole/zero pair to a certain spectrum has been studied by examining the 

consequences of systematically moving that pole/zero pair in certain directions and the 

effect of their removal. A GUI developed by the members of the Center for Signal and 

Image Processing (CSIP) at the Georgia Institute of Technology, under the name 

“PEZdemo”, has been also used to study the effect of the poles/zeros removal or change 

in location on the resulting DTF. 
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Chapter 3 

RESULTS AND DISCUSSION I: HRTF/DTF Modeling 

3.1   Computing DTFs from HRTFs 

Figure 1 shows an example of how DTFs are computed based on the HRTFs at all 259 

locations for one ear of cat 1107 from (Rice et al., 1992). The direction-independent, or 

the common, component of the ensemble of HRTFs was determined by taking the 

average across all locations and is shown in Figure 3.1 and Figure 3.2. DTFs are 

computed by subtracting the common component from the HRTF measured at each 

location.  

 
Figure 3.1. HRTFs at all locations from (Rice et al., 1992) dataset for cat 1107 (right ear) 
in addition to the direction independent, or common, component for this dataset (red 
plusses). 
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Figure 3.2 shows how an HRTF measured at (0°,-30°) can be reconstructed from the sum 

of the modeled DTF (using techniques proposed in this study) and the common 

component.  Note in Figure 3.2 that the first prominent peak in the HRTF, which is due to 

the non-directional resonance of the ear canal and concha (Tollin and Koka, 2009), is 

apparent in the common component but has been removed or minimized in the DTF.   

 

3.2 Smoothing 

Redundant Wavelet Transform (RWT) was used here to smooth DTFs in order to better 

preserve the main spectral features, including the frequency of the FN, when compared to 

the measured DTFs. Smoothing removes the “noise” in the recorded DTFs. It also 

simulates the bank-of-bandpass-filtering of sounds as produced in the cochlea (~1/3 – 1/6 

octave band-pass resolution).  Figure 3.3 shows an example of DTF smoothing on human 

and cat data using level 3 “Symmlet 17” wavelet filter bank. As noticed, smoothing 

retains the main features of the DTFs and eliminates or reduces the noise or the very fine 

details in the spectra (i.e., the very sharp and deep spectral notches) that the auditory 

system cannot resolve.  

 

3.3 Modeling Human DTFs 

Pole/zero models were applied to SDO and SOW datasets and the results were compared 

to the results in (Kulkarni and Colburn, 2004).  Kulkarni and Colburn also modeled the 

same SDO and SOW datasets and, according to their human subject listening tests,  
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“… IIR models can provide efficient descriptions of HRTFs and whereas subjects 

could discriminate a 20-pole all-pole model reconstruction and a 4-pole 4-zero 

pole-zero model from the original HRTF, they found the task to be very difficult 

when a 25-pole all-pole model and a 6-pole, 6-zero pole-zero model 

reconstruction were used.”   

In other words, with HRTFs reconstructed using a 25-pole all-pole model, across the 

locations used in their psychophysical tests, the subjects could not consistently 

discriminate perceptually stimuli filtered through the reconstructed HRTFs from the 

empirical HRTFs.  Thus, the reconstructed HRTFs were as good as the empirical. Thus, 

HRTFs reconstructed using that model order adequately preserved the important spectral 

components necessary for veridical (i.e., realistic and correct) perception. Across all 

HRTF locations, the worst reconstruction errors (using Equation 2.5) Kulkarni and 

Colburn (2004) reported from the SDO dataset using the successful models had errors of 

3.5 and 5.3 dB for the left and the right ear, respectively.   

3.3.1 dB error metric 

Here, it has been assured that none of the modeled DTFs at any location exceed the 

minimum value of those worst cases (i.e. 3.5 dB) and that the mean error across all 

locations is comparable or less than the mean error from Kulkarni and Colburn (2004).  

Different model orders of all-pole and all-zero were systematically applied to the 

measured DTFs for the SDO and SOW datasets. Figure 3.4(a) shows plots for the mean 

dB error calculated using Equation (2.5) over the 144 locations versus model order for 

SDO human dataset (left ear) using all-pole and all-zero models. 
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Figure 3.2. DTF at (0º,-30º) modeled using all-pole model of order 25 (middle) is added 
to the common component (top) of the HRTF measurements (cat 1107) resulting in an 
accurate reconstruction (bottom, solid line) of the measured HRTF (bottom, dotted line) 
at that location. 
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(a) (b) 
 

Figure 3.3. DTF smoothing using “Symmlet 17” filter bank. (a) Human (SDO) right-ear 
dataset. (b) Cat 1107 right-ear dataset.  

 
Error was computed with respect to the raw unsmoothed DTFs. Order 25 of all-pole 

model is marked in Figure 3.4(a) by a dashed line with an equivalent mean error of 1.17 

dB.  For a given order, all-zero models give smaller error than all-pole when applied to 

the same dataset. Figure 3.4(b) shows the same plots but with modeled DTFs compared 

to smoothed-empirical DTFs. In that case, the error curves for a given model order are 

shifted down and give less error relative to those in Figure 3.4(a) and give less error. This 

was expected because the sharp peaks and notches of the raw DTFs (e.g., Figure 3.2), that 

are likely not perceptually resolvable (Kulkarni and Colburn, 1999), are reduced after 

smoothing. A mean error of 1.10 dB at order 25 was obtained for the all-pole model when 

modeled DTFs are compared to smoothed-empirical DTFs.   

 

The results of Figure 3.4 show that a model order of 25 for both all-pole and all-zero 

models produces mean DTF reconstruction error values that are at or below the error 

values mentioned above from the psychophysical studies of Kulkarni and Colburn 

0  5 10 15 20
-20

-10

0

10

20

Frequency (KHz)

G
ai

n 
(d

B
)

Measured
Smoothed

az=0°, el=-36°

0  10 20 30 40

-30

-20

-10

0

10

Frequency (KHz)

G
ai

n 
(d

B
)

Measured
Smoothed

az=0°, el=0°



 

36 

 

(2004).  Based on this error and the subjective listening tests performed by Kulkarni and 

Colburn (2004) we believe that the modeled DTFs will be perceptually similar to the 

empirical DTFs.  Our all-pole model of order 25 gives mean errors of 1.17 and 1.04 dB 

and worst case fit error of 3.23 and 3.50 dB for the left and the right ear, respectively. 

All-zero model of order 25 gives mean errors of 0.91 and 0.83 dB and worst case fit 

errors of 2.25 and 2.53 dB for the left and the right ear, respectively. Although all-zero 

models orders lower than 25 could yield comparable error values to order 25 with all-pole 

model, these lesser orders produced substantially larger peak errors in reconstructed 

DTFs at some locations with values much higher than 3.5 dB. 
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(a) 

 
(b) 

Figure 3.4. DTF-reconstruction model order vs. mean error in dB for both all-pole and 
all-zero models calculated using Equation (2.5) between modeled and empirical DTFs 
(a), and modeled and smoothed-empirical DTFs (b).  
 
The spatial location dependent distributions of errors and the resulting descriptive 
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position for SDO and SOW datasets are shown in Figures 3.5-3.8 and Table 3.1. To make 

the comparison consistent with the results in (Kulkarni and Colburn, 2004), only 

frequencies between 300 and 15,000 Hz have been considered in the error calculations. 

The error calculations for the models in this research are directly comparable to the ones 

reported in Kulkarni and Colburn (2004) using the same error criteria of Equation (2.5).  

In other words, when applied to the same datasets (SDO and SOW), our models and 

those of Kulkarni and Colburn (2004) produce the same results, thus validating our 

model.  

 
Figure 3.5. Error distributions for all-pole model with 25 poles as a function of the source 
position for SDO dataset-left ear.  
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Figure 3.6. Error distributions for all-pole model with 25 poles as a function of the source 
position for SDO dataset- right ear.  

 
Figure 3.7. Error distributions for all-pole model with 25 poles as a function of the source 
position for SOW dataset- left ear.  
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Figure 3.8. Error distributions for all-pole model with 25 poles as a function of the source 
position for SOW dataset- right ear.  

 

Data set Mean (dB) STD (dB)  
Max (dB) 

location (az,el) 

SDO (L-ear) 1.17 0.65 
3.23 

(150°,-36º) 

SDO (R-ear) 1.04 0.53 
3.50 

(-75°,-36º) 

SOW (L-ear) 0.95 0.51 
2.53 

(110°,0º) 

SOW (R-ear) 1.08 0.55 
2.98 

(-30°,-40º) 

Table 3.1. Descriptive statistics for the error values calculated using Equation (2.5) 
between empirical and order 25 all-pole modeled DTFs for SDO and SOW data sets. 
SDO data set has 144 measurements while SOW data set has 505 measurements for each 
ear.  
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Figure 3.9 shows an example of a modeled DTF from the right ear SDO dataset at (0°,0º) 

using all-pole and all-zero models with order 25. The worst case fits of the SDO dataset 

for each model, all-pole or all-zero are shown in Figures 3.10(a) and 3.10(b), 

respectively. In all cases, the worst fit errors were located contralateral to the ear used for 

DTF measurement, locations that typically have low signal to noise ratio to begin with. 

The large errors were due entirely to mis-fitting the very narrow and deep spectral 

notches.  

 

Figure 3.9. An example of all-pole and all-zero (order 25) fitting to DTF of location 
(0°,0º).  
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(a) 

 
(b) 

Figure 3.10. The worst case fits for (a) all-pole and (b) all-zero models. 
 

 

 

0  5 10 15 20
-50

-40

-30

-20

-10

0

Frequency (KHz)

G
ai

n
 (

d
B

)

Measured DTF
AP modeled,
error= 3.50 dB

az= -75°, el= -36°

0  5 10 15 20
-50

-40

-30

-20

-10

0

Frequency (KHz)

G
ai

n
 (

d
B

)

Measured DTF
AZ modeled,
error= 2.53 dB

az= -105°, el= -36°



 

43 

 

The spatial location dependent distributions of errors and the resulting descriptive 

statistics of these errors for all-zero model of order 25 as a function of the source position 

for SDO dataset are shown in Figures 3.11, 3.12 and Table 3.2. In general, for a given 

model order, all-zero models gave lower errors than all-pole models when used for this 

dataset (see also Figure 3.4).   

 
Figure 3.11. Error distributions for all-zero model with 25 zeros as a function of the 
source position for SDO dataset-left ear.  
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Figure 3.12. Error distributions for all-zero model with 25 zeros as a function of the 
source position for SDO dataset-right ear.  
 

Data set Mean (dB) STD (dB)  
Max (dB) 

location (az,el) 

SDO (L-ear) 0.91 0.48 
2.25  

 (150°,-36º) 

SDO (R-ear) 0.83 0.40 
2.53 

(-105°,-36º) 

Table 3.2. Descriptive statistics for the error values calculated using Equation (2.5) 
between empirical and order 25 all-zero modeled DTFs for SDO data set. SDO data set 
has 144 measurements for each ear. 
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Kulkarni and Colburn (2004), we show here that HRTF-reconstruction error for all-pole 

and all-zero models decreases systematically with increasing model order.  Moreover, for 
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psychophysical studies of HRTF reconstructions Kulkarni and Colburn (2004) showed 

that HRTFs reconstructed with a 25th order all-pole model could not be reliably 

discriminated from empirical HRTFs.  In other words, perceptually the empirical HRTFs 

and the modeled HRTFs are the same when modeled with order 25.  One can think of this 

model order, and the associated across-location error metric, as a ceiling error below 

which reconstructed HRTFs are no longer likely to be indiscriminable from empirical 

HRTFs. The reconstruction error produced by a 25th order model is used here as a ceiling 

error and ensure that all HRTFs reconstructed using models produce less error than this, 

for both human and cat HRTFs.  

 

3.3.2 Magnitude squared coherence error 

Figure 3.13 shows an example of the magnitude squared coherence (MSC) plot at (0°,0°) 

between the measured and the all-pole (25) modeled DTFs from SDO (L-ear) dataset, in 

addition to the plots of the measured and the modeled DTFs at that location. While the 

error calculated using Equation (2.5) describes the mean log difference between the dB 

values of the measured and the modeled DTFs, the MSC describes the difference between 

the spectral shapes themselves quantitatively.  Thus, the MSC is a more global metric to 

assess the fidelity of the model reconstruction. 

In general, a good model for DTF reconstruction should provide both low dB error values 

and high MSC values.  But note that these two metrics need not be correlated.  For 

example, a simple multiplication factor in a reconstructed DTF relative to the empirical 

DTF would yield large dB errors, but may have no impact at all on the MSC error 
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because the spectral shape had been maintained.  And because perception of HRTFs and 

DTFs depends upon the shape of the spectrum and not the absolute values of the 

magnitude, the reconstruction with the high MSC error will be more perceptually similar 

to the empirical HRTF than the reconstruction with the high dB error.  The mean MSC 

value (±1 SD) and the mean RMS error (±1 SD) for all locations in the SDO (L-ear) 

dataset for the all-pole model of order 25 compared to other values for orders 64, 46, 32, 

20 and 12 are shown in Figure 3.14. Plots of the mean MSC between the measured and 

the all-pole and all-zero modeled DTFs over all locations versus the model order are 

shown in Figure 3.30 where they are also compared to the data from cat 1107. 

 
Figure 3.13. An example of the coherence spectrum: Measured, all-pole (25) modeled 
DTFs and the magnitude-squared coherence (MSC) at location (0°,0°) from SDO (L-ear) 
dataset. The mean MSC is calculated over the frequency range (2-15 kHz).  
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Figure 3.14. The mean magnitude-squared coherence (MSC) of all locations vs. the mean 
RMS error of all locations for all-pole model using Equation (2.5) at orders (64, 46, 32, 
25, 20 and 12). These values at order 25 are marked by dotted lines. The error bars show 
the standard deviations of the mean across the 144 locations for each order. 
 
3.4  Modeling Cat DTFs 

Our modeling techniques were also applied to one of the cat datasets from (Rice et al., 

1992), cat 1107, to test whether these DTF reconstruction models applied to animal data 

not only produce low error metrics based on Equation (2.5), but also preserve the main 

spectral features, such as the deep spectral notches, described in that paper.  Measured, 

all-pole and all-zero modeled DTFs with order 25 for both models for cat 1107-right ear 

dataset are plotted in Figure 3.15 for sound source locations in the frontal field.  Model 

order 25 was chosen initially because this order provided good fits to the human HRTFs 

above.  These DTFs are plotted in the range of (2-33 KHz).  
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Figure 3.15. Measured and modeled DTFs from the frontal field of cat (1107-right ear) 
dataset provided by Rice and his colleagues (Rice et al., 1992). The position indicated in 
the figure represents the location of the sound source which ranges from -60° to 60° in 
the azimuthal plane and from -30 ° to 90° in the vertical plane. At each position, there are 
three plots, smoothed-measured DTF (solid), modeled DTF with all-pole of order 25 
(dash-dot line) and modeled DTF with all-zero of order 25 (cross markers) with the error 
resulted from each fitting.   
 
Initial observations from Figure 3.15, reveal that both all-pole and all-zero models with 

order 25 provide excellent fits to the measured DTFs in terms of the error metric 

(Equation (2.5)) and that both models also preserve the main features of the measured 

DTFs (peaks and notches). The mean error at all locations from cat 1107-right ear 

dataset using all-pole and all-zero models of order 25 are 1.71 and 1.47 dB and the worst 

case fits have errors of 3.27 and 3.20 dB, respectively.  

In cats, as shown in Figure 3.15, the FN changes from about 8 to 18 kHz with the change 

in elevation from low to high, with similar behavior as the sound source is moved 

laterally from the midline in the azimuth with fixed elevation (e.g., Musicant et al., 1990; 

Rice et al., 1992; Tollin and Koka, 2009).  

Figure 3.16 shows examples from cat 1107 measured HRTFs of the increase in the FN 

frequency with the increase in the elevation angle and as the source moves horizontally in 

the frontal field toward the ear used for HRTF measurements.   
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(a) 

 

(b) 

Figure 3.16. (a) cat DTFs at azimuths (0°, 15°, 30° and 45°) with fixed elevation at 7.5°, 
(b) DTFs at elevations (0°, 15°, 30° and 45°) with fixed azimuth at 0º. 
 

2 10 20 30
-40

-20

0

20

Frequency (KHz)

G
a
in

 (
d
B

)
0oAZ

15oAZ

30oAZ

45oAZ

2 10 20 30

-40

-20

0

20

Frequency (KHz)

G
a
in

 (
d
B

) 0oEL

15oEL

30oEL

45oEL



 

51 

 

The systematic movement of the FN with the change in elevation and azimuth angle of 

the sound source is clarified in Figures 3.17-3.20. Smoothed-measured DTFs (Figure 

3.17) and modeled DTFs using all-zero model of order 25 (Figure 3.18) from cat 1107 

dataset are plotted at a fixed 0° AZ and elevations from -30° to 60° with 7.5° step. A 20 

dB shift has been added between each consecutive DTFs. Smoothed-measured (Figure 

3.19) and modeled (Figure 3.20) DTFs using all-zero model of order 25 are plotted at a 

fixed 0° EL and azimuths from -30° to 60° with 15° step. The dotted arrow shows the 

systematic tendency of the FN movement with the increase in the elevation and the 

azimuth angle of the sound source. 

 

Figure 3.17. Smoothed measured cat DTFs at 0° AZ and elevations from -30° (bottom) to 
60° (top) with a 7.5° step. The dotted arrow shows the systematic tendency of the FN 
movement with the change in elevation.  
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Figure 3.18. All-zero modeled DTFs at 0° AZ and elevations from -30° (bottom) to 60° 
(top) with a 7.5° step. The dotted arrow shows the systematic tendency of the FN 
movement with the change in elevation.  

 
Figure 3.19. Smoothed measured cat DTFs at 0° EL and azimuths from -30° (bottom) to 
60° (top) with a 15° step. The dotted arrow shows the systematic tendency of the FN 
movement with the change in azimuth. 
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Figure 3.20. All-zero modeled DTFs at 0° EL and azimuths from -30° (bottom) to 60° 
(top) with a 15° step. The dotted arrow shows the systematic tendency of the FN 
movement with the change in azimuth. 
 
To test more generally the hypothesis that the modeled DTFs preserved the spectral notch 

feature, the degree to which the systematic movement of the first notch frequency (FNF) 

with source location was preserved was examined for both all-pole and all-zero models 

with sources confined to the frontal field, which is where the FN feature in cats is very 

clear and prominent (Rice et al., 1992; Tollin and Koka, 2009). Both models preserved 

this feature quite well as shown in detail in Figures 3.21-3.28. The FN frequency changes 

in the measured, smoothed, all-pole and all-zero modeled DTFs with the change in the 

elevation angle at fixed azimuth angle 0° are shown in Figure 3.21.  Figure 3.22 shows 

the same, but with the change in azimuth angle at fixed elevation angle of 15º.  To test 
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the FN frequencies extracted from smoothed DTFs (Figure 3.23), all-pole modeled DTFs 
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(Figure 3.24) and all-zero modeled DTFs (Figure 3.25) were plotted as a function of the 

FN frequencies from the empirical DTFs. Regression lines were computed for each 

relation using simple linear regression after forcing the regression line to pass through the 

origin (see Chapter 2 for details). 

 

The values of the regression lines’ slopes (β) and the resulting r2 values plotted in Figures 

3.23-3.25 show that the systematic movement of the FN was not affected by the 

smoothing technique and that it was well preserved by both models. The linear regression 

was performed with 1000 bootstrap replications for 209 locations.  The resulting 

distributions of bootstrapped regression line slopes were compiled, from which the 95% 

confidence intervals was computed. Figures 3.26 and 3.27 show the distributions of 

regression line slopes from order 25 all-pole and all-zero models, respectively. The 95% 

confidence intervals for these distributions were [0.989-1.001] for the all-pole and 

[0.997-1.006] for the all-zero model. Because the regression line slope of value 1.0 is 

included within the 95% confidence intervals, both models accurately preserve this 

important spectral feature.  Moreover, boxplots of the FN frequency absolute difference 

between measured and modeled DTFs in both models are shown in Figure 3.28. So, in 

addition to the low dB error values that are comparable to the results in (Kulkarni and 

Colburn, 2004), we show for the first time that these kinds of low-order DTF models also 

preserved the important FN frequency and its systematic movement with the change in 

the sound source location accurately.  
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Figure 3.21. Change of FN frequency in measured, smoothed, all-pole (order 25) and all-
zero (order 25) modeled DTFs with the change in elevation at fixed 0° azimuth. 

 
Figure 3.22. Change of FN frequency in measured, smoothed, all-pole (order 25) and all-
zero (order 25) modeled DTFs with the change in azimuth at fixed 15° elevation. 
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Figure 3.23. FN frequency in the measured HRTFs plotted with the ones extracted from 
smoothed DTFs. The green line represents the linear regression. 

 
Figure 3.24. FN frequency in the measured HRTFs plotted with the ones extracted from 
all-pole modeled DTFs. The green line represents the linear regression. 
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Figure 3.25. FN frequency in the measured HRTFs plotted with the ones extracted from 
all-zero modeled DTFs. 

 
Figure 3.26. Results of bootstrap resampling of 1000 replications for the regression line 
slope between FN frequency in the measured DTFs and all-pole modeled DTFs. 
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Figure 3.27. Results of bootstrap resampling of 1000 replications for the regression line 
slope between FN frequency in the measured DTFs and all-zero modeled DTFs. 
 

 
Figure 3.28. Boxplots of the FN frequency absolute difference between measured and all-
pole and all-zero modeled DTFs. The line in the middle of each box represents the 
median and the lines at the upper and the lower edge of each box represent the upper and 
the lower quartiles, respectively.  
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In cats, the change in the FN frequency for changes in source elevation is larger than that 

with the changes in azimuth. For example, while the FN frequency in the measured DTFs 

increases from 8.16 to 16.08 kHz for elevation angles from -30° to 60° at 0° azimuth 

(resulting in ~88 Hz/degree for empirical DTFs and ~84 for both 25th order all-pole and 

all-zero models), it increases from 8.85 - 13.15 kHz for the same angular displacement in 

azimuth at 0° elevation (~48 Hz/degree for empirical and ~50 for all-pole and ~45 for all-

zero). 

 

The reconstruction of the broadband spectral patterns of the DTFs using these models has 

been also tested using the MSC metric. Figure 3.29 shows an example of the MSC plot at 

location (0°,45°) from cat 1107 (R-ear) dataset between the measured and the 25th order 

all-pole modeled DTFs, in addition to the plots of the measured and the modeled DTFs at 

that location.  Similar results were observed in the models of UCHSC dataset from Tollin 

and Koka (2009).  
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Figure 3.29. An example of the coherence spectrum: Measured, all-pole modeled DTFs 
(order 25) and the magnitude-squared coherence (MSC) at location (0°,45°) from cat 
1107 (R-ear). The mean MSC is calculated over the frequency range (2-33 kHz). 
 
 
Plots of the mean MSC between measured and all-pole and all-zero modeled DTFs over 

all locations versus the model order using cat dataset (cat 1107) and human dataset 

(SDO) are shown in Figure 3.30. At order 25, the all-pole model gave mean MSC values 

ranged from 0.79 to 0.98 (mean = 0.92 ±0.04) for SDO (R-ear) dataset over the frequency 

range (0.3-15 kHz), and ranged from 0.68 to 0.96 (0.86 ±0.06) for cat 1107 (R-ear) 

dataset over the frequency range (2-33 KHz). All-zero model had mean MSC values 

ranged from 0.28 to 0.98 (0.85±0.14) for SDO dataset, and ranged from 0.66 to 0.97 

(0.86±0.07) for cat 1107 dataset. Order 25 for both all-pole and all-zero models show 

satisfactory MSC values for the used human and cat datasets.   
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Figure 3.30. Mean magnitude-squared coherence (MSC) vs. all-pole and all-zero model 
order for human (SDO) and cat 1107 datasets. 
 

On average, low RMS error is associated with high MSC, as might be expected (although 

this relationship need not be always true). Some DTFs at some locations show low RMS 

error and also low MSC value because the DTF reconstruction misses a notch or a peak 

despite the fact that it fits the rest of the spectrum well. On the other hand, at some other 

locations, high RMS error is associated with high MSC value when the model follows the 

spectral shape of the empirical DTF and model the deep notches for example by shallow 

notches. In summary, 25th order all-pole and all-zero models gave low RMS error 

(Figures 3.4-3.12), high MSC values (Figures 3.13, 3.14, 3.29 and 3.30) and preserved 

one of the important sound localization cues, the FN (Figures 3.15, 3.17-3.28), 

successfully for the tested human and cat datasets.  
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Chapter 4 

Sound Source Localization Prediction from Head Related Transfer 

Functions Using Artificial Neural Networks 

“The work done in this chapter was supervised by Prof. Rahmat Shoureshi, School of 

Engineering and Computer Science, University of Denver.”  

 

4.1   Overview 

In this chapter, the performance of different architectures of feed-forward back 

propagation artificial neural networks (ANNs) trained by either batch gradient descent 

(BGD) or  Levenbergh-Marquardt (LM) algorithm are evaluated for estimating the sound 

source direction (i.e. azimuth and elevation angles) from Head Related Transfer Function 

(HRTF) corresponds to that direction. Cat data are used in this study. The trained NNs 

efficiency will be measured by root-mean-squared (RMS) error and regression analysis 

between NNs outputs and the corresponding targets. The localization of the sound source 

direction from HRTFs facilitates the task of building virtual auditory displays which are 

used in psychoacoustic and physiological research, industry, some medical applications, 

military simulations, and entertainment.   
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4.2  Literature Review 

Many techniques have been used to find the relations between the HRTFs and the sound 

source direction, how to build HRTFs at locations that are not measured or at finer 

resolution in the space, and how to predict the accurate location of the sound source given 

the corresponding HRTF of that location. Some of these techniques are based on artificial 

neural networks that have been used successfully in many fields such as modeling, 

classification and data processing.  

 

Neti and his colleagues (1992) trained a three-layer NN to map spectra of stimuli 

(mainly, broad band noise) to sound source locations and they have used that mapping to 

study the importance of particular cues by systematically modifying or eliminating cues 

in different frequency regions and examined the response properties of the neurons after 

those modifications. Cat HRTFs in the frontal field have been used in that study. It has 

been shown that the frequency region (5 to 18 KHz) is the most important in supporting 

the calculations of HRTF models (Neti et al., 1992). The main feature in this region is 

what is known as the first notch (FN) in the literature (Rice et al., 1992), which is defined 

as the first prominent spectral minima. In a similar study but using human data, a two-

layer feed-forward back propagation ANN has been trained to transform localization cues 

(spectral cues in addition to the inter-aural time difference cues) to a two-dimensional 

map that gives the direction of the sound source (Chung et al., 2000). Alim and Farag 

(2000) trained a NN using the binaural cues, interaural time and level differences, to 
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localize sound in the horizontal plane only. Human data were used for that purpose and 

the results have been evaluated using a human subjective test.  

Hofman and his colleagues (1998) used a two layer feed-forward network to map pinna 

filter functions of a new modified ear (input layer), by adding a well-fitting custom-made 

molds within the concha of the regular ear, onto the elevation domain (one output unit 

that resembles the elevation). Other researchers (Furukawa et al., 2000) used ANN to 

identify the sound source location using spike patterns of cortical neural ensembles as 

inputs to that network. The input layer takes spike patterns from the brain and uses a 

feed-forward NN to find the sound location in the azimuth plane only.  

In this chapter, different NN architectures will be trained to transfer the spectral 

presentation of the head related transfer functions into two outputs that resemble the 

azimuth and the elevation angles of the sound source direction using only the spectral 

cues for sound localization.  

 

4.3   Methods 

4.3.1 Used data 

Some of the data used in this study are taken from a dataset for one of the cats measured 

at the University of Colorado Health Science Center (UCHSC), provided by Prof Daniel 

Tollin and published in (Tollin and Koka, 2009). That dataset was sampled at 3º in 

vertical steps and 7.5º horizontal steps with a nominal sampling rate of 100 kHz. The 

other data set used here is from “cat 1107” from the study of (Rice et al., 1992). Source 
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positions for that dataset were 259 locations in the frontal field, between -75° and 75° 

AZ. All measurements are taken at a fixed distance of 1 meter from the subject’s head. 

Here, only samples of frequency range of (2-33 KHz) will be used as inputs since it has 

been shown that there is little direction dependent information and minor effect in sound 

localization outside this frequency range (Kistler and Wightman, 1992; Rice et al., 1992; 

Langendijk and Bronkhorst, 2002).  

 

4.3.2 Data preprocessing  

For the purpose of this study, DTFs, the directional components of the HRTFs, will be 

used instead of the entire HRTF because they only have the directional components 

which carry the features that will change with the sound direction and exclude the 

common component among all HRTFs for a certain ear of a certain subject. That will also 

reduce the complications needed to be taken into consideration for each HRTF. This has 

been done by finding the average of the measured HRTFs in log scale frequency domain 

at all locations, then subtracting this average from each HRTF at each location in the 

logarithmic scale, 

                                                                                                                (4.1)       

            

which is equivalent to division in the linear scale. In Equation (4.1), ‘n’ is the number of 

the measured HRTFs for a certain dataset at one ear. All inputs will be normalized to fall 

in the range of -1.0 and 1.0 before applying them to the network. All DTFs have also 
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been smoothed using redundant wavelet transform to get rid of the unwanted details in 

the DTFs as described in the Methods section (2.3.4). 

 

It has been shown in previous studies (Kulkarni and Colburn, 1998; Hacihabiboglu et al., 

2002) that HRTFs can be smoothed significantly in frequency domain without affecting 

the perception of sound stimuli filtered by HRTFs. In other words, the very fine spectral 

detail in HRTFs is not important for sound localization as long as the major features are 

preserved (Kulkarni and Colburn, 1998; Jin et al., 2000; Asano et al., 1990). A “symmlet 

17” filter bank is applied to the magnitude responses of the DTFs using Redundant 

Wavelet Transform (RWT) technique for smoothing, which helps to remove the spectral 

details that are not important in sound direction perception. The performance of the NN 

will be evaluated by the values of the root-mean-squared (RMS) errors between the 

network outputs and the targets and given in degrees. In addition to the RMS error, some 

regression analysis between the network response and the corresponding targets are 

performed. When the network gives outputs that are the same as the targets, then the 

slope of the regression line would be 1 and the y-intercept would be 0. 

4.3.3 Neural network architecture 

Two-layer feed-forward back propagation neural networks with tan-sigmoid function 

used in the hidden layer and linear function used in the output layer will be used. In this 

study, either Batch Gradient Descent or Levenbergh-Marquardt algorithm will be used as 

training techniques. Matlab 7.0 has been used for data conditioning and preprocessing, 

NNs training, and NNs evaluation. 
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In back propagation, a gradient vector that points to the steepest descent from the current 

point was calculated which means that as the training moves along this vector, it will 

decrease the error. These sequential movements will eventually find a minimum error. 

The inputs to the NN are samples of the normalized DTFs (in frequency domain). There 

will be two outputs, the elevation angle and the azimuth angle. Each output, azimuth and 

elevation, has its own trained network. The resulting angles will be given in radian which 

is simply converted to the angle in degrees for testing and evaluation of the NN for each 

output separately. Several numbers of neurons have been used in the hidden layer and the 

results have been compared.      

 

4.4   Results and Discussion 

Four different tests were done in this study. A description of each of them with the 

corresponding results is presented.  

4.4.1 Test1: Spectra from median and horizontal plane-high spatial resolution: 

The dataset used in this test consists of DTFs from the median plane (0° azimuth at 

various elevations) and the horizontal plane (0° elevation at various azimuths) from the 

dataset of UCHSC (Tollin and Koka, 2009). An advantage of using this dataset is that it 

has high resolution (3° and 7.5° steps in elevation and azimuth planes, respectively). In 

the first part of this test, the training data are DTFs at locations of 0° azimuth and 

elevations from -45° to 45° with 6° step. The test data are DTFs at locations of 0° 

azimuth and elevations from -45° to 45° with 3° step. Initially, two-layer feed-forward 

back propagation ANN with 8 neurons in the hidden layer and one neuron in the output 
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layer has been trained to transform the input DTFs into an angle that resembles the 

elevation angle of sound source location as shown in Figure 4.1. The empirical DTFs of 

this dataset have been down-sampled by the factor of 4 in the frequency domain (i.e. 

from 512 to 128 points) in order to reduce the inputs samples.  

      
Figure 4.1. A schematic diagram of the neural network used in Test1 with a 128 input 
frequency samples, 8 units in the hidden layer and one unit in the output layer. The output 
predicts the elevation or the azimuth angle of the sound source.    
 
Different learning rates have been tested for the best performance of the network by 

comparing the resulting error between the targets and the simulated outputs from the 

testing DTF dataset with same number of epochs for network training. A learning rate of 

0.005 has been used according to this comparison. Table (4.1) shows the performance of 

the networks with monaural inputs. Because it is possible to find a number of solutions 
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that provide a small final error E for the training dataset, we will focus more on the 

testing datasets errors that include the data that are not used for the training and it will be 

used to examine the performance of the networks with more generalization. The last 

column in Table (4.1) shows the mean and the standard deviation of the RMS error 

values between the predicted outputs from the NN and the targets in degrees. Both 

training techniques, batch gradient descent and Levenbergh-Marquardt, gave close error 

results to each other when used with 8 neurons in the hidden layer. When larger number 

of neurons in the hidden layer were tested on the same data sets (hidden layer with 24, 64 

and 128 neurons), they gave lower error values on the training data set but didn’t show 

any improvement on the testing data sets compared to the NN with 8 neurons in the 

hidden layer. Networks trained by Levenbergh-Marquardt show an increase in the RMS 

error as the number of the neurons in the hidden layer goes below 4. On the other hand, 

using smaller number of neurons for the networks trained by batch gradient descent, 

improved the performance of the network with the same NN parameters by giving less 

testing error. In addition to the error criterion used to evaluate the networks response, a 

regression analysis on the trained networks between the networks output and the 

corresponding targets has been performed. Figure 4.2(a) and 4.2(b) show the regression 

analysis results for the lowest RMS error case for both training techniques using 8 

neurons in the hidden layer. The regression analysis of the lowest RMS error with the 

batch gradient descent training algorithm using one neuron in the hidden layer is shown 

in Figure 4.2(c).  
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The same idea has been applied to DTFs in the horizontal plane at fixed elevation 0°. 

Training data are the monaural inputs trained with DTFs at locations of 0° elevation and 

azimuths from -90° to 90° with 15° step and tested on locations of 0° elevation and 

azimuths from -90° to 90° with 7.5° step. The results are shown in Table (4.2). 

 

Testing dataset 
# neurons in 
hidden layer 

Training 
Technique 

# 
solutions 

Etesting 

(degrees) 
DTFs in median plane 8 BGD 10 5.82±2.64 
DTFs in median plane 8 LM 10 5.85±2.03 
DTFs in median plane 4 BGD 10 5.82±2.62 
DTFs in median plane 4 LM 10 4.10±2.41 
DTFs in median plane 2 BGD 10 3.58±1.51 
DTFs in median plane 2 LM 10 7.69±3.22 
DTFs in median plane 1 BGD 10 3.03±0.85 
DTFs in median plane 1 LM 10 7.23±3.47 

Table 4.1. Testing dataset RMS error with different number of neurons in the hidden 
layer and different training techniques for a NN used to estimate the elevation angle in 
the median plane. 

 
The higher resulting errors compared to the ones tested on the median plane can be 

justified by the fact that spectral features are clearer and show systematic movement with 

the change in elevation in a smoother way compared to those with the change in the 

horizontal plane. That may also explain why spectral features are very important for 

localization with the change in elevation (e.g., Musicant et al., 1990; Blauert, 1997; Rice 

et al., 1992), while the binaural cues are very important for sound source localization in 

the azimuthal plane. In addition, in this dataset, DTFs in the horizontal plane have lower 

resolution compared to those in the vertical plane, which may cause higher error values.  
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Testing dataset # neurons in 
hidden layer 

Training 
Technique 

# 
solutions 

Etesting 

(degrees) 
DTFs in horizontal plane 8 BGD 10 11.73±2.67 
DTFs in horizontal plane 8 LM 10 10.42±3.55 
DTFs in horizontal plane 4 BGD 10 9.25± 2.34 
DTFs in horizontal plane 4 LM 10 12.79±3.88 
DTFs in horizontal plane 2 BGD 10 9.96±2.37 
DTFs in horizontal plane 2 LM 10 21.31±9.76 
DTFs in horizontal plane 1 BGD 10 14.68±2.86 
DTFs in horizontal plane 1 LM 10 29.09±8.43 

Table 4.2. Testing dataset RMS error with different number of neurons in the hidden 
layer and different training techniques for a NN used to estimate the azimuth angle in 
the horizontal plane. 
 

4.4.2 Test2: Spectra from median and horizontal plane- lower resolution: 

In this test, DTFs of “cat 1107” dataset from study (Rice et al., 1992) were used. Table 3 

shows the performance of the networks with monaural inputs trained with DTFs at 

locations of 0° azimuth and elevations from -30° to 90° with 15° step and tested on 

locations of 0° azimuth and elevations from -30° to 90° with 7.5° step from the dataset 

measured by Rice et al. (1992). Only the error of the testing datasets will be mentioned to 

examine the performance of the networks with more generalization. The resulting error is 

higher when Rice dataset is used compared to the ones from UCHSC dataset and that can 

be justified by the lower spatial resolution for cat 1107 data. When a larger number of 

neurons were used in the hidden layer, it improved the training data error but gave higher 

error values on the testing dataset.  

 

 



 

72 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4.2. Regression analysis for the network output versus the targets of elevation 
angles in the median plane with (a) 8 neurons in the hidden layer and using BGD 
training, (b) 8 neurons in the hidden layer and using LM training, and (c) 1 neuron in the 
hidden layer and using BGD training. 
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That is caused by the over-fitting for the training data. In order to improve the network 

generalization in this case, the number of neurons is kept low enough to provide an 

adequate fit without over-fitting. Table (4.3) shows a summary of the performance of the 

networks with monaural inputs in the median plane with 8 neurons in the hidden layer. 

 

Testing dataset 
# neurons in 
hidden layer 

Training 
Technique 

# 
solutions 

Etesting 

(degrees) 
DTFs in median plane 8 BGD 10 9.31±2.72 
DTFs in median plane 8 LM 10 12.35±4.37 

Table 4.3. Testing dataset RMS error with 8 neurons in the hidden layer and 
different training techniques for a NN used to estimate the elevation angle in the 
median plane. 

 
When an ANN of 8 neurons in the hidden layer used to estimate the azimuth angle in the 

horizontal plane, the testing error values increased as expected. The used training data 

were at 0° elevation and azimuth angles of -75°, -45°, -15°, 7.5°, 22.5°, 37.5°, 52.5°, 

67.5° and 75°, and tested on locations of 0° elevation and azimuth angles -75°, -60°, -45°, 

-30°, -15°, 0°, 7.5°, 15°, 22.5°, 30°, 37.5°, 45°, 52.5°, 60°, 67.5° and 75°. The results are 

summarized in Table (4.4).  

 

Testing dataset 
# neurons in 
hidden layer 

Training 
Technique 

# 
solutions 

Etesting 

(degrees) 
DTFs in horizontal plane 8 BGD 10 20.95±7.59 
DTFs in horizontal plane 8 LM 10 22.22 ±5.21 

Table 4.4. Testing dataset RMS error with 8 neurons in the hidden layer and different 
training techniques for a NN used to estimate the azimuth angle in the horizontal plane. 
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4.4.3 Test 3. Spectra in the frontal field  

In this test, the used DTFs are from (Rice et al., 1992) study. The used data are DTFs 

from the frontal field which range over azimuths between -75° and 75° and elevations 

from -30° to  90°, spaced every 15° in azimuth and 7.5° in elevation. The locations of the 

DTFs used for NN training are shown in Appendix A. The rest of the locations in the 

frontal field except the DTF at location of elevation 90° are used to test the NN and to 

evaluate the response of the network in estimating the elevation and the azimuth angles of 

the sound source. So, in this part, none of the testing data are used in the training of the 

network. The networks are evaluated according to their ability to predict the location that 

corresponds to the given DTF as an azimuth and an elevation angle of the sound source. 

The total number of the training data is 211 DTFs and the networks are tested on the 

DTFs of 43 locations distributed in the frontal space. The results are summarized in Table 

(4.5). The lowest testing error for elevation angle estimation is (mean±std) 5.15°±0.91° 

for the network architecture of 32 neurons in the hidden layer and using the Levenbergh-

Marquardt training technique. A network with 16 neurons in the hidden layer which was 

trained by batch gradient descent showed the lowest error with a value of (15.36°±0.91°) 

in estimating the azimuth angle for the testing data. On average, the model gets the result 

correct. The largest errors appear to be in the contralateral side where the SNR is poor. 

This might be expected. On the ipsilateral side, the NN does quite a good job.     
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Testing dataset 

# neurons 
in hidden 

layer 

Training 
Technique 

# 
sol’s 

Elevation angle prediction 
RMS error (degrees) 

Azimuth angle prediction 
RMS error (degrees) 

Etraining Etesting Etraining Etesting 

DTFs in frontal field 4 BGD 10 7.20±1.05 8.19±1.34 17.71±1.12 15.39±0.96 
DTFs in frontal field 4 LM 10 0.72±1.14 27.66±14.45 10.89±0.00 78.41±69.15 
DTFs in frontal field 8 BGD 10 5.86±0.44 7.29±0.66 16.14±0.73 15.56±1.01 
DTFs in frontal field 8 LM 10 0.34±1.08 13.78 ±4.73 14.04±6.64 30.06±5.45 
DTFs in frontal field 16 BGD 10 4.87±0.30 6.49±0.73 14.93±0.33 15.36±0.91 
DTFs in frontal field 16 LM 10 0.00± 0.00 5.93±0.82 10.89±0.00 26.66±2.89 
DTFs in frontal field 32 BGD 10 3.85±0.50 5.76±0.53 13.80±0.28 16.14±0.91 
DTFs in frontal field 32 LM 10 0.00±0.00 5.15±0.59 10.89±0.00 24.81±1.76 
DTFs in frontal field 64 BGD 10 3.08±0.24 6.25±0.56 13.03±0.20 17.62±0.88 
DTFs in frontal field 64 LM 10 0.57±1.39 5.24±1.16 13.52±6.23 23.95±2.12 
DTFs in frontal field 128 BGD 10 2.57±0.14 7.98±0.65 12.44±0.18 19.21±0.43 
DTFs in frontal field 128 LM 10 NA*  NA*  NA*  NA*  

Table 4.5. Training and testing datasets’ errors with different number of neurons in the 
hidden layer and different training techniques for a NN used to estimate the direction of the 
sound source (i.e. the azimuth and the elevation angle of the sound source). *result not 
available because computer did not have enough memory. 
 

4.4.4 Test 4. Measured and modeled DTFs comparison  

Now that we have established the general applicability of the NN model of DTF 

recognition, in this part, NNs will be used to evaluate modeling techniques for measured 

DTFs. NNs are trained with the entire set of measured DTFs in the frontal field from Rice 

et al. (1992) and then the modeled DTFs were simulated on these trained networks to 

evaluate the used modeling techniques. DTFs modeling using all-pole and all-zero 

techniques will be evaluated here. This test can facilitate the evaluation of the models 

used for DTFs fitting by checking how the neural network can differentiate the measured 

from the modeled DTFs and give the average error of sound source localization for the 

modeled DTFs. This test was exclusive to elevation angles because we are emphasizing 

on spectral cues in this analysis and elevation is represented exclusively by spectral cues. 

To the best of my knowledge, this kind of evaluation for the modeled DTFs has not been 
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performed before. A network with 32 neurons in the hidden layer with Levenbergh-

Marquardt training algorithm was used in this test because it has shown very good results 

in the previous tests.  The network has been trained over all measured DTFs in the frontal 

field to give an error of (5x10-5)°. The regression analysis for the trained data is shown in 

Figure 4.3(a). The resulting RMS errors of the predicted elevation angles using modeled 

DTFs simulated on the trained network are summarized in Table (4.6). Figure 4.3(b) 

shows plots of the RMS error between the predicted and the actual elevation angles vs. 

the order of all-pole and all zero models used to model the DTFs. Figures 4.3(c)-4.3(f) 

show the regression analysis of the predicted elevation angles using the NN from all-pole 

and all-zero modeled DTFs and the exact targets of the corresponding elevation angles 

for the model orders 64 and 32.  

 

    

Testing dataset 

Elevation angle prediction RMS 
error, Etesting (degrees) 

All-pole model All-zero model 

Modeled DTFs (order=64) 2.55 0.86 
Modeled DTFs (order=46) 4.92 2.44 
Modeled DTFs (order=32) 5.15 5.29 
Modeled DTFs (order=25) 8.94 7.95 
Modeled DTFs (order=20) 14.47 20.16 
Modeled DTFs (order=16) 21.04 25.83 
Modeled DTFs (order=10) 31.67 33.53 
Modeled DTFs (order=6) 48.73 75.81 

Table 4.6. RMS error values for elevation angle prediction from 
modeled DTFs simulated on a NN trained by measured DTFs in the 
frontal field. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.3. (a) Regression analysis for the simulated training data by NN versus the 
actual targets of elevation angles in the frontal field. (b) plots of the RMS error between 
the predicted and the actual elevation angles vs. the order of all-pole and all zero models 
used to model the DTFs. Regression analysis for the exact targets of the elevation angles 
in the frontal field with predicted elevation angles using the NN from DTFs modeled by 
(c) all-pole (order 64), (d) all-pole (order 32), (e) all-zero (order 64), (f) all-zero (order 
32).  
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4.5 Conclusions  

In general, NN showed much better performance in predicting elevation angles than 

azimuth angles using the spectral features of HRTFs, even when same spatial resolution 

is used in both planes. A network with more than one neuron in the hidden layer to 

estimate the elevation angle in the median plane only showed slightly poorer performance 

than that with one neuron when BGD training technique is used. A feed-forward back-

propagation NN with 32 neurons showed a very good performance in predicting the 

elevation angle of the sound source from given HRTFs in the frontal plane with an 

average RMS error of 5.15° according to a randomly chosen 43 locations in the frontal 

field used in test 3. The trained network showed a high correlation between actual and 

predicted elevations. On the other hand, the performance was not as good in azimuth 

angle prediction where the average RMS error with the same network architecture was 

16.14°. Furthermore, the neural networks can be a useful tool to evaluate modeling 

techniques for measured DTFs. According to this evaluation, high orders of all-zero 

models outperforms the ones of all-pole models with the same orders in modeling the 

measured DTFs by giving lower RMS error values in elevation angle prediction and 

better correlation with real elevation angles. 
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Chapter 5 

RESULTS AND DISCUSSION II:  

Systematic Movements of Poles/Zeros with Sound Source Direction  

5.1 Poles/Zeros Movement Effect on DTF Spectrum 

To simplify the idea of the relation that will be used here between the locations of the 

poles/zeros on the pole/zero plot and the main features (peaks and notches) in the transfer 

function that those poles/zeros resemble, an example of a pair of zeros and the effect of 

their movement on the transfer function is examined. Figure 5.1(b) shows a spectral 

notch created by the location of the pair of zeros in Figure 5.1(a) assuming a sampling 

frequency of 100 KHz. A plot of the notch frequency (frequency at the minimum point of 

the notch) versus the polar angle (β) (Figure 5.1(a)) for the zero in the upper half of the 

unit circle is shown in Figure 5.1(c). A similar behavior is found when  two pairs of poles 

are moved systematically.  Moving the two poles in the same way as the zeros above 

creates a systematic moving notch between the two peaks that these two pairs of poles 

creates.  Thus, where the data are modeled using zeros or poles, the systematic movement 

of the first notch frequency component of the DTF spectra can be modeled in the way 

shown in Figure 5.1.   

Systematic movements of some poles and zeros, but not others, have been noticed as 

elevation or azimuth angle changes in the modeled DTFs. The systematic movements in 
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poles and zeros in pole/zero models are not always simple to describe even with this 

systematic change in DTF spectral features with the change in elevation or azimuth. Also, 

at certain locations or ranges these poles and zeros show systematic movements with the 

increase in the elevation for example by moving counter clockwise but high order 

relations are needed to describe these systematic movements. In this study, focus is given 

to the systematic movements of poles and zeros of the modeled DTFs in the frontal field.  

 
(a) 

 
(b) 

 
(c) 

Figure 5.1. Demonstration of the movement of a spectral notch (b) with the change in the 
location of a pair of zeros given by the polar angle β (b). (c) A plot of the “notch” 
frequency as a function of the polar angle (β) of the moving zero in (a). 
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5.2  Poles/Zeros Systematic Movement in Human DTFs  

Because of the low spatial resolution of SDO dataset (18° step in the vertical plane and 

15° in the horizontal plane), SOW human dataset, which has 10° step in both direction, 

will be used in this part of the study. Since the systematic movement of poles and zeros 

accompany the systematic changes in DTFs, it is useful to pay attention to the range that 

one of the important features in DTFs that show systematic movement, the first notch, is 

noticed clearly. In SOW dataset, FN exhibits systematic behavior in the frontal field in 

the range between azimuth angle of 130° and -60° and elevation angles of -50° and 50° 

for the right ear. In locations outside this range, the systematic movement of the FN was 

not clear and sometimes several notches are noticed in the region of the FN that merge to 

one notch at some location. The two notches in the DTFs of elevations between -50° and 

20° with fixed azimuth angle of 160° is an example of those cases. Where these two 

notches frequencies increase systematically with the increase in the elevation till they 

merge in one notch at location (az=160°, el=30°). Groups of poles in all-pole model and 

zeros in all-zero model have shown systematic movements with the change in azimuth 

and elevation angles within the same range that the systematic FN movement has been 

noticed for these datasets. Some other systematic movements of notches as well as poles 

and zeros in all-pole and all-zero models outside those ranges that diminish at certain 

locations are also noticed. Because of that, those locations are not included in the ranges 

specified above as clear systematic movement of poles and zeros with the change in 

sound source direction.  
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Figure 5.2 shows the smoothed measured DTFs of the SOW data for the right ear at 

locations of 0° azimuth and elevations from -50° (bottom in the plot) to +40° (top in the 

plot) with a 10° step. The green dotted arrow shows the systematic tendency of the FN 

movement with the increase in the elevation of the sound source. Figure 5.3 shows the 

all-pole modeled DTFs using 25 poles for the same locations of Figure 5.2. As shown in 

Figure (5.3), spectral notches and peaks, including the main first notch, are accurately 

modeled. Since it will not be practical to track the movements of all poles/zeros of all 

locations in one plot at the same time, the poles/zeros movement tracking will be 

performed within limited ranges. Figure 5.4 shows the poles of the all-pole model of 

order 25 in the upper half of the unit circle for modeled DTFs at locations of fixed 0° 

azimuth and elevation angles of 10°, 20°, 30°, 40° and 50° which are given by colors, 

magenta, cyan, red, green and blue, respectively. The counter clockwise systematic 

movement of the poles located under the four groups (marked as G1, G2, G3 and G4) 

shown in Figure 5.4 is remarkable. Since the responses of all used models in this project 

are real-valued, the complex poles and zeros occur in conjugate symmetric pairs, i.e., if 

there is a complex pole (zero) at p=po, there is also a complex pole (zero) at p=po
* 

(Hayes, 1998). Because of this, only the poles in all-pole models and zeros in all-zero 

models in the upper half of the z-plane unit-circle in addition to the real axis will be 

shown for the pole/zero plots.  

 

Other systematic movements of other poles with the change in the elevation angle can be 

noticed but it is not as clear as it is in these four groups. Figures 5.5 and 5.6 show the 
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systematic movement of the first notch with the change in the azimuth angle at the 

locations of fixed 0° elevation and azimuth angles between -20° (bottom in the plots) and 

50° (top in the plots) for measured and all-pole modeled of order 25 DTFs, respectively. 

The green dotted arrows in Figures 5.5 and 5.6 show the systematic tendency of the FN 

movement with the change in azimuth angle of the sound source. Figure 5.7 shows the 

poles of the all-pole model of order 25 in the upper half of the unit circle for modeled 

DTFs at locations of fixed 0° elevation and azimuth angles of -10°, 0°, 10°, 20° and 30° 

which are given by colors, magenta, cyan, red, green and blue, respectively. The counter 

clockwise systematic movement of some poles located under the four groups shown in 

Figure 5.7 is noticed.  

 

By comparing the results with the change in location of both azimuths and elevation in 

Figures 5.2-5.7, it is clear that the systematic movement of the poles within each group is 

larger with the change in elevation compared to that with the change in azimuth. The 

change in FN as an important spectral feature that accompanies the change in elevation or 

azimuth can justify that. FN frequency increases from 6.80 KHz to 8.07 KHz with the 

change in the elevation angle from 10° to 50° with fixed azimuth at 0°, while the FN 

frequency changes from 6.41 KHz to 6.85 KHz when there is the same angular 

displacement in azimuth, from -10° to 30° with fixed elevation at 0°.  
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Figure 5.2. Smoothed measured DTFs of SOW data for the right ear at locations of 0° 
azimuth and elevations from -50° (bottom) to +40° (top) with a 10° step. The green 
dotted arrow shows the tendency of the FN movement with the change in the elevation 
angle. 

 
Figure 5.3. All-pole modeled DTFs (order 25) of SOW data for the right ear at locations 
of 0° azimuth and elevations from -50° (bottom) to +40° (top) with a 10° step. The green 
dotted arrow shows the tendency of the FN movement with the change in the elevation 
angle. 
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Figure 5.4. Pole/zero plots for DTFs of locations of 0° azimuth and elevations 50° (blue), 
40° (green), 30° (red), 20° (cyan), 10° (magenta). Dotted arrows show the tendency of the 
systematic movement of the poles in groups 1-4. G1 to G4 represent the groups of poles 
that show systematic movements with the change in sound source elevation.  
 

 
Figure 5.5. Smoothed measured DTFs of SOW data for the right ear at locations of 0° 
elevation and azimuths from 50° (top) to -20° (bottom) with a 10° step. The green dotted 
arrow shows the tendency of the FN movement with the change in the azimuth angle. 
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Figure 5.6. Modeled DTFs (using all-pole of order 25) of SOW data for the right ear at 
locations of 0° elevation and azimuths from 50° (top) to -20° (bottom) with a 10° step. 
The green dotted arrow shows the tendency of the FN movement with the change in the 
azimuth angle. 
 
             
 

Figure 5.7. Pole/zero plots for DTFs of locations of 0° elevation and azimuths 30° (blue), 
20° (green), 10° (red), 0° (cyan), -10° (magenta). Dotted arrows show the tendency of the 
systematic movement of the poles in groups 1-4.  
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To track the systematic movement of poles or zeros in all-pole or all-zero models, 

polynomials of different orders have been used to describe the change in poles/zeros 

locations with the change in elevation or azimuth angle within each group that shows 

these systematic movements. To evaluate the reconstructed DTFs from the estimated 

locations of poles/zeros, they have been compared to modeled and measured DTFs at the 

same locations. The two-dimensional polar coordinate system is used in building the 

relations of the changes in poles/zeros locations. To test the efficiency of reconstructing 

DTFs using parametric relations to describe the systematic movement of the poles in all-

pole model or zeros in all-zero model, few tests will be performed.  

 

5.2.1 Test#1: Systematic movements of poles in all-pole models with changes in the 

elevation of sound sources in the median plane 

Objective: “Extract relations between the locations of the poles in the groups that show 

systematic movements with the change in elevation and the change in the elevation angle 

(β) in the median plane, reconstruct DTFs using the extracted (fitted) relations and 

compare the reconstructed DTFs to the measured ones.”    

Using right ear SOW dataset, the systematic movement of the poles with the change in 

the polar angle (β) in the polar coordinate system (see Figure 5.8) is described. A third-

order polynomial has been used to describe the change in the polar angle (β) with the 

change in the elevation angles described in Figures 5.2-5.4 for the four groups of poles. 

The length of the vectors, r1 and r2 in the used polar coordinate system (Figure 5.8) are 

fixed and chosen to be equal to the average of the distances of the poles in each group 
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from the origin. (alternatively, the vector magnitudes could be an additional free 

parameter, but we did not test for this here.) This test is applied on locations (azimuth= 0° 

and elevations 10°, 20°, 30°, 40° and 50°). The pole/zero plots that show the locations of 

the poles in the four groups are shown in Figure 5.9. The estimated locations of the poles 

in the rebuilt models using third order polynomials are shown in Figure 5.10. The fitted 

third order polynomials used to find the location of the poles in the rebuilt models for 

poles groups, one, two, three and four are implemented in Equations 5.1, 5.2, 5.3, and 

5.4, where the polar angle (β) and the elevation angle (θ) are given in radian. Those 

polynomials have been fitted to give the lowest mean squared error between the predicted 

and the observed polar angles. The first notch frequency versus the elevation angle is 

shown in Figure 5.11 for both, all-pole modeled DTFs and rebuilt DTFs.   

 

     β 	 1.672θ� � 2.291θ� � 1.315θ � 0.005                 (5.1) 

   β 	 0.627θ� � 0.836θ� � 0.720θ � 0.312                         (5.2) 

    β 	 0.305θ� � 0.209θ� � 0.283θ � 0.623                       (5.3) 

   β 	 0.884θ� � 1.009θ� � 0.577θ � 0.918                           (5.4) 
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Figure 5.8. Demonstration of the vectors and the polar angle (β) that is used to extract 
relations between poles/zeros movement with the change in the sound source 
elevation/azimuth.  
 

 
Figure 5.9. Pole/zero plots for DTFs of locations of 0° azimuth and elevations 50° (blue), 
40° (green), 30° (red), 20° (cyan), 10° (magenta). Dotted arrows show the tendency of the 
systematic movement of the poles in groups 1-4.  
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Figure 5.10. Pole/zero plots for DTFs of locations of 0° azimuth and elevations 50° 
(blue), 40° (green), 30° (red), 20° (cyan), 10° (magenta) where the locations of the poles 
in the four groups are rebuilt using 3rd order polynomials.  
 

 
Figure 5.11. The first notch frequency versus the elevation angles for all-pole modeled 
DTFs and reconstructed DTFs from relations in Equations (5.1-5.4).   
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5.3 Cat Data 

Rice and his colleagues (1992) reported that the region over which the FN exhibits 

systematic behavior spans a region in front of the cat located roughly between -45 ° AZ 

and 60° AZ and between -30° EL and 45° EL. Cat 1107 dataset has been used to track the 

systematic movement of poles/zeros in that range of the frontal field. Figures 5.12 and 

5.13 show the measured and the modeled DTFs, respectively, for the right ear of dataset 

provided kindly from (Rice et al., 1992, cat 1107) at fixed 0° azimuth  and elevations 

from -30º (bottom in the plot) to +90º (top in the plot)  with 7.5º step using all-pole model 

with order equals 25. To show these spectra in a suitable way, a 20 dB shift between the 

consecutive elevation angles’ spectra was inserted. The systematic changes of some 

spectral notches are traced by dotted arrows in Figures 5.12 and 5.13. Plots of the FN 

frequency extracted from measured HRTFs, measured, smoothed and modeled DTFs 

versus the elevation angle are shown in Figure 5.14.  
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Figure 5.12. Smoothed measured DTFs of cat 1107 dataset for the right ear at locations 
of 0° azimuth and elevations from 90° (top) to -30° (bottom) with a 7.5° step. The dotted 
arrows show the tendency of some prominent notches movements with the change in the 
elevation angle.  

\  
Figure 5.13. All-pole modeled DTFs of cat 1107 dataset for the right ear at locations of 
0° azimuth and elevations from 90° (top) to -30° (bottom) with a 7.5° step. The dotted 
arrows show the tendency of some prominent notches movements with the change in the 
elevation angle. 
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Figure 5.14. Plots of the FN frequency extracted from measured HRTFs, measured, 
smoothed and modeled DTFs versus the elevation angle for cat 1107 dataset. 
 
Since the dataset of UCHSC provided by Prof Daniel Tollin (Tollin and Koka 2009), one 

of the advisors of this study, has higher resolution compared to cat 1107 dataset it will be 

used for detailed tests on poles/zeros systematic movement with the change in elevation 

or azimuth angles. Figures 5.15 and 5.16 show the measured and the modeled DTFs of 

the right ear at 0° Az and elevations from -45º (bottom in the plot) to +45º (top in the 

plot) with 3º step using all-pole model. The root-mean-squared (RMS) error between 

measured and all-pole modeled DTFs for these locations has a mean value of 0.682 dB 

with standard deviation of 0.251 dB and a maximum value of 1.444dB. The FN 

frequency increases from 7.74 KHz to 15.24 KHz as elevation angle increases from -45° 

to +45° and this systematic movement is accurately preserved in both the all-pole and the 

all-zero models as shown in Figure 5.17. The mean absolute error for the difference in 

FN frequency between measured and all-pole modeled DTFs has a mean value of 0.101 

KHz with a standard deviation of 0.225 KHz and a maximum value of 0.475 KHz.   
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Figure 5.15. Smoothed measured DTFs of UCHSC dataset for the right ear at locations of 
0° azimuth and elevations from 45° (top) to -45° (bottom) with a 3° step. The dotted 
arrows show the tendency of some prominent notches movements with the change in the 
elevation angle.  

 
Figure 5.16. All-pole modeled DTFs of UCHSC dataset for the right ear at locations of 0° 
azimuth and elevations from 45° (top) to -45° (bottom) with a 3° step. The dotted arrows 
show the tendency of some prominent notches movements with the change in the 
elevation angle.  
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Figure 5.17. Plots of the FN frequency extracted from measured, all-pole modeled and 
all-zero modeled DTFs versus the elevation angle for UCHSC dataset. 
 

5.3.1 Test#2: Systematic movements of poles in all-pole model with change in 

elevation of sound source in the median plane using linear relations of pole 

movements 

Objective: “Extract linear relations between the locations of the poles in the groups that 

show systematic movements with the change in elevation and the change in the elevation 

angle (β) in the median plane, reconstruct DTFs using the extracted (fitted) relations and 

compare the reconstructed DTFs to the measured ones.”    

Figure 5.18 shows a pole/zero plot for all-Pole modeled DTFs at fixed azimuth angle 0º 

and elevation angles from +3º to +18º with 3º steps. The poles in the four marked groups 

show systematic movements with the increase in the elevation angle. Linear relations 

(Equations 5.5-5.8) have been used to describe the change in the poles’ polar angle (β) 
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locations with the increase in the elevation angle from +3º to +18° for groups 1, 2, 3 and 

4, respectively. The locations of the poles in the rebuilt models using Equations (5.5-5.8) 

are shown in Figure 5.19. The modeled and the reconstructed DTFs of locations at fixed 

azimuth angle 0º and elevation angles from +3º to +18º with 3º steps are shown in 

Figures 5.20 and 5.21. Figure 5.22 shows the FN frequency for modeled (blue), when the 

four groups of poles only moves and the rest are fixed at the poles of elevation of 

3°(dotted red), and from DTFs rebuilt by the linear relations (black) at elevations 3º, 6º, 

9º, 12º, 15º, and 18º.  

    β 	 0.283θ� 0.472                          (5.5) 

    β 	 0.381θ� 0.846                   (5.6) 

    β 	 0.522θ� 0.983                   (5.7) 

    β 	 0.875θ� 1.320                   (5.8) 

 
 
Figure 5.18. Pole/zero plots for DTFs of locations of 0° azimuth and elevations 3° (blue), 
6° (green), 9° (red), 12° (cyan), 15° (magenta), 18° (yellow). Poles that show systematic 
movements are marked by Groups 1-4.  
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Figure 5.19. Pole/zero plots for DTFs of locations of 0° azimuth and elevations 3° (blue), 
6° (green), 9° (red), 12° (cyan), 15° (magenta), 18° (yellow). Locations of the poles 
within the four groups are estimated using the fitted first order relations.  
 

 
Figure 5.20. All-pole modeled DTFs of UCHSC dataset for the right ear at locations of 0° 
azimuth and elevations from 18° (top) to 3° (bottom) with a 3° step. The dotted arrow 
shows the tendency of the FN movement with the change in the elevation angle.  
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Figure 5.21. Reconstructed DTFs using linear relations of UCHSC dataset for the right 
ear at locations of 0° azimuth and elevations from 18° (top) to 3° (bottom) with a 3° step. 
The dotted arrow shows the tendency of the FN movement with the change in the 
elevation angle.  
 

 
Figure 5.22. Plots of the FN frequency extracted from all-pole modeled DTFs (blue), 
DTFs reconstructed by moving the poles in the four groups (red) and DTFs reconstructed 
using linear relations for the poles in the four groups (black) versus the elevation angle 
using UCHSC dataset. 
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5.3.2 Test #3: Systematic movements of poles in all-pole model with change in 

elevation of sound source using 1st and 3rd order polynomials 

Objective: “Compare the efficiency in the preservation of the FN frequency in the 

reconstructed DTFs using first order and third order polynomials”   

In this test, the poles in the four groups for locations at 0° azimuth and elevations at 0°, 

6°, 12°, 18°, and 24° were used to build mathematical relations with the change in the 

elevation angle and then use that relation to build DTFs at 0° azimuth and elevations 3°, 

9°, 15°, 21° as follows. First order (linear) and third order polynomials are tested in 

building the relations between the elevation angles (θ) and the poles polar angle (β) in the 

upper half of the unit circle of the z-plane. The length of the vector in the polar 

coordinate system (the distance of the estimated pole location from the origin) is taken as 

the average of the lengths of the two neighboring poles vectors.  

 

FN frequency extracted from the modeled DTFs and rebuilt DTFs are shown in Figure 

5.23 with (mean±std) for the absolute error in FN frequency (153.37°±81.40°) Hz and 

(96.375°±55.40°) Hz, for first and third order polynomials, respectively. Both polynomial 

orders give satisfactory prediction for the locations of the poles in the reconstructed DTFs 

in regards of the FN preservation, but as expected, the 3rd order polynomial gives better 

reconstruction.  
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Figure 5.23. Plots of the FN frequency extracted from all-pole modeled DTFs (blue), 
reconstructed DTFs using linear relations for the poles in the four groups (red) and 
reconstructed DTFs using 3rd order relations for the poles in the four groups (black) 
versus the elevation angle. 
 

5.3.3 Test #4: Systematic movements of zeros in all-zero model with change in 

elevation of sound source in the median plane 

Objective: “ Extract relations between the locations of the zeros in the groups that show 

systematic movements with the change in elevation and the change in the elevation angle 

in the median plane for DTFs at certain locations. Using those extracted relations, build 

DTFs at other locations in the median plane and compare the reconstructed DTFs to the 

measured ones.”    

DTFs at fixed 0° azimuth and elevations of -45°, -39°, -33°, -27° and -21° are used to 

reconstruct DTFs at 0° azimuth and elevations at -42°, -36°, -30° and -24° (i.e. at 

locations of finer resolution of the measured DTFs). The reconstructed DTFs were 

evaluated by comparing them to the measured DTFs at those locations. Figure 5.24 
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shows the all-zero modeled DTFs of the right ear at 0° Az and elevations from -45º 

(bottom in the plot) to +45º (top in the plot) with 3º step using the all-zero model. The 

pole/zero plots for the modeled DTFs at locations of fixed 0° azimuth and elevations of -

45°, -39°, -33°, -27° and -21° are shown in Figure 5.25. 

 
Figure 5.24. All-zero modeled DTFs of UCHSC dataset for the right ear at locations of 0° 
azimuth and elevations from 45° (top) to -45° (bottom) with a 3° step. The dotted arrows 
show the tendency of some prominent notches movements with the change in the 
elevation angle.  
 
DTFs at locations of 0° azimuth and elevations of -42°, -36°, -30° and -24° have been 

reconstructed as follows: 
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on the group they are located within. Those equations are extracted using the zeros 

movements of the all-zero modeled DTFs of locations at 0° azimuth and elevations of -

45°, -39°, -33°, -27° and -21°.   

2. The distance of each zero in step number 1 from the origin is calculated as the average 

of the distances of the zeros locations in the same group for the locations directly above 

and directly below the reconstructed DTF location.   

3. The rest of the zeros locations are chosen to be at the same locations of the zeros of the 

DTF directly in the lower elevation.  

 

 
Figure 5.25. Pole/zero plots for DTFs of locations of 0° azimuth and elevations -45° 
(blue), -39° (green), -33° (red), -27° (cyan), -21° (magenta). The arrows in the figure 
show the tendency of the systematic movement of the zeros in groups 1-5.  
 

The reconstructed DTFs are evaluated using RMS dB error comparison with the 

measured DTFs at those locations and also with the preservation of the FN frequency as 

an important spectral feature for sound localization. The zeros locations of the 
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reconstructed DTFs at -42°, -36°, -30° and -24° using 3rd order polynomials are shown in 

Figure 5.26. 

 

Figure 5.26. Pole/zero plots for reconstructed DTFs of locations of 0° azimuth and 
elevations -42° (blue), -36° (green), -30° (red), -24° (cyan). The locations of zeros in 
groups 1-5 were estimated using 3rd order polynomials.  
The fitted third order polynomials used to estimate the zeros locations polar angle are 

demonstrated for the groups from 1 to 5 by Equations 5.9 to 5.13, respectively.  

   β 	 �4.323θ� � 5.073θ� � 0.673θ� 0.635                (5.9) 

   β 	 �1.204θ� � 1.807θ� � 0.613θ� 0.527                 (5.10) 

   β 	 �2.181θ� � 2.961θ� � 0.659θ� 0.988                         (5.11) 

   β 	 �1.946θ� � 3.167θ� � 1.134θ� 1.179                         (5.12) 

   β 	 2.650θ� � 5.451θ� � 3.974θ � 2.312                            (5.13) 

The measured, modeled and reconstructed DTFs for elevations of -42°, -36°, -30° and -

24° are shown in Figure 5.27. The RMS error values between measured and 

reconstructed DTFs are shown in Table 5.1. 
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(a) El= -42° 

 

(b) EL= -36° 

 

(c) EL= -30° 

 

(d) EL= -24° 

Figure 5.27. Measured, all-zero modeled and reconstructed DTFs using 3rd order 
polynomials for locations of 0° azimuth and elevations of -42°, -36°, -30° and -24°.   
 

Elevation angle 
(degrees) 

RMS error (2-33 KHz)  
(dB) 

RMS error (2-22 KHz)  
(dB) 

-42° 2.13 1.03 
-36° 1.46 0.92 
-30° 2.64 2.46 
-24° 1.78 2.04 

Table 5.1. RMS error values between measured and reconstructed DTFs using 3rd order 
polynomials for locations of 0° azimuth and elevations of -42°, -36°, -30° and -24°.   
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Figure 5.28(a) shows the plots for the modeled and the reconstructed DTFs at the four 

locations with dotted arrows that resemble the tendency of the FN movement with the 

change in elevation angle. Plots of the changes in the FN frequency with the elevation 

angle for measured, modeled and reconstructed DTFs are shown in Figure 5.28(b). 

 

5.3.4 Test #5: Systematic movements of poles in all-pole model with changes in the 

elevation of sound source in the median plane 

Objective: “ Extract relations between the locations of the poles in the groups that show 

systematic movements with the change in elevation and the change in the elevation angle 

in the median plane for DTFs at certain locations. Using those extracted relations, build 

DTFs at other locations in the median plane and compare the reconstructed DTFs to the 

measured ones. In addition, a comparison is performed between the reconstructed DTFs 

using the all-pole and the all-zero modeled DTFs”    

In this part, test #4 is repeated but with all-pole model used instead of all-zero. The 

pole/zero plot for locations of the all-pole modeled DTFs at 0° azimuth and elevations -

45°, -39°, -33°, -27° and -21° are shown in Figure 5.29. The arrows show the tendency of 

poles movement with the increase in elevation angle. 
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(a) 

 
(b) 

Figure 5.28 (a) Plots of modeled and the reconstructed DTFs at locations of 0° azimuth 
and elevations of -42° (bottom), -36°, -30° and -24° (top). The dotted arrow shows the 
tendency of the FN movement with the change in the elevation angle. (b) Plots of the FN 
frequency extracted from measured DTFs (green), all-zero modeled DTFs (blue) and 
DTFs reconstructed by moving the zeros in the five groups (red) versus the elevation 
angle. 
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Figure 5.29. Pole/zero plots for all-pole modeled DTFs of locations of 0° azimuth and 
elevations -45° (blue), -39° (green), -33° (red), -27° (cyan), -21° (magenta). The arrows 
in the figure show the tendency of the systematic movement of the poles in groups 1-3.  
 

The locations of the poles for the reconstructed DTFs at elevations of -42°, -36°, -30° and 

-24° using 3rd order fitted polynomials are shown in Figure 5.30. The third-order 

equations used to estimate the polar angle (β) as a function of the elevation angle (θ) for 

the locations of the poles in the rebuilt models are given in Equations (5.14-5.16) for 

poles’ groups (1-3), respectively. 

   β 	 �1.247θ� � 2.095θ� � 0.924θ� 0.234                         (5.14) 

   β 	 �2.768θ� � 4.874θ� � 2.535θ� 0.348                         (5.15) 

   β 	 0.957θ� � 2.307θ� � 2.121θ � 1.584                            (5.16) 
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Figure 5.30. Pole/zero plots for reconstructed DTFs of locations of 0° azimuth and 
elevations -42° (blue), -36° (green), -30° (red), -24° (cyan). The locations of the poles in 
groups 1-3 were estimated using 3rd order fitted polynomials.  
 

The measured and the reconstructed DTFs for elevations of -42°, -36°, -30° and -24° are 

shown in Figure 5.31. The RMS error values between measured and reconstructed DTFs 

are shown in Table 5.2. 

Figure 5.32 shows the plots for the modeled and the reconstructed DTFs at elevations -

42°, -36°, -30° and -24° with dotted arrows represent the tendency of the FN movement 

with the change in elevation angle. Plots of the changes in the FN frequency with the 

elevation angle for measured, reconstructed DTFs using all-pole modeled DTFs and 

reconstructed DTFs using all-zero modeled ones are shown in Figure 5.33. 
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(a) EL= -42° 

 

(b) El=-36° 

 

(c) El= -30° 

 

(d) El= -24° 

Figure 5.31. Measured, all-pole modeled and reconstructed DTFs using 3rd order 
polynomials for locations of 0° azimuth and elevations of -42°, -36°, -30° and -24°.  
  

Elevation angle 
(degrees) 

RMS error (2-33 KHz) (dB) RMS error (2-22 KHz) (dB) 

-42° 2.04 1.68 
-36° 1.49 1.13 
-30° 1.84 1.36 
-24° 2.50 2.36 

Table 5.2. RMS error values between measured and reconstructed DTFs using 3rd order 
fitted polynomials for locations of 0° azimuth and elevations of -42°, -36°, -30° and -24° 
using all-pole modeled DTFs.   
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Figure 5.32. Plots for all-pole modeled and reconstructed DTFs at locations of 0° azimuth 
and elevations of -42° (bottom), -36°, -30° and -24° (top). The dotted arrow shows the 
tendency of the FN movement with the change in the elevation angle.  
 

 
Figure 5.33. Plots of the FN frequency extracted from measured DTFs (green), DTFs 
reconstructed by moving the zeros of all-zero model in the five groups shown in Figure 
5.26 (green), and DTFs reconstructed by moving the poles of all-pole model in the three 
groups shown in Figure 5.30 (red) versus the elevation angle in the median plane. 
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5.3.5 Test #6: Systematic movement of zeros in all-zero model with changes in 

azimuth angle of sound sources in the horizontal plane  

Objective: “ Extract relations between the locations of the zeros in the groups that show 

systematic movements with the change in azimuth and the change in the azimuth angle in 

the horizontal plane for DTFs at certain locations. Using those extracted relations, build 

DTFs at other locations in the horizontal plane and compare the reconstructed DTFs to 

the measured ones.” 

In this test, zeros in two groups of all-zero modeled DTFs that show systematic 

movements for locations at 0° elevation and azimuths of -30°, -15°, 0°, 15°, and 30° are 

used to reconstruct DTFs at locations of 0° elevation and azimuths of -22.5°, -7.5°, 7.5° 

and 22.5°. The zeros plots for DTFs of 0° elevation and azimuths of -30°, -15°, 0°, 15°, 

and 30° with arrows that show the tendency of zeros movements with the change in 

azimuth angle are shown in Figure 5.34. Lower resolution in the horizontal plane (7.5° 

step) compared to the one of the vertical plane (3° step) results in not having the strong 

systematic movement that has been noticed in the vertical plane. Also, the smaller 

changes in the spectral features with the change in the azimuth angle compared to the 

ones with the change in the elevation angle over the same angular displacement makes 

the expected systematic movements of the poles/zeros weaker with the change in azimuth 

compared to the ones with the change in elevation. In addition, as previously mentioned, 

spectral cues are more fundamental in the vertical plane localization compared to the 

horizontal plane which may add the possibility of having clearer spectral cues changes 

with elevations compared to those with azimuths. 
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Figure 5.34. Pole/zero plots for DTFs of locations of 0° elevation and azimuths -30° 
(blue), -15° (green), 0° (red), 15° (cyan), 30° (magenta). The arrows in the figure show 
the tendency of the systematic movement of zeros in groups 1 and 2.  
 

DTFs at locations of 0° elevation and azimuths of -22.5°, -7.5°, 7.5° and 22.5° have been 

reconstructed as follows: 

1. The polar angle (β) for the locations of zeros’ groups that show systematic movements 

with change in azimuth angle (two groups of symmetric conjugate zeros pairs in this test 

as shown in Figure 5.34) for each DTF is calculated using the extracted relations 

depending on the group they are located within. 

2. The distance of the zeros in step number 1 from the origin is calculated as the average 

of the distances of the zeros locations in the same group for the DTFs locations on both 

sides of the reconstructed DTF location.   

3. The rest of the zeros locations are chosen to be at the same locations of the zeros of the 

modeled DTF that is adjacent the one needs to be reconstructed from the negative 

azimuth axis.   
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The reconstructed DTFs were evaluated using the RMS error comparison with the 

measured DTFs at those locations and also with the preservation of the FN frequency as 

an important spectral cue for sound localization. The zeros locations of the reconstructed 

DTFs at 0° elevation and azimuths of -22.5°, -7.5°, 7.5° and 22.5° using 3rd order fitted 

polynomials are shown in Figure 5.35. The third order polynomials used for the two 

groups of zeros locations polar angle (β) are given for groups 1 and 2 in Equations 5.17 

and 5.18, respectively.    

   β 	 �0.1267θ� � 0.0668θ� � 0.1526θ � 0.671                  (5.17) 

   β 	 �0.2278θ� � 0.1939θ� � 0.3777θ � 1.1533                (5.18) 

 

 
Figure 5.35. Pole/zero plots for reconstructed DTFs of locations of 0° elevation and 
azimuths -22.5° (blue), -7.5° (green), 7.5° (red), 22.5° (cyan). The locations of zeros in 
groups 1 and 2 were estimated using 3rd order polynomials.  
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The measured and the reconstructed DTFs for locations of 0° elevation and azimuths of -

22.5°, -7.5°, 7.5° and 22.5° are shown in Figure 5.36. The RMS error values between 

measured and reconstructed DTFs are shown in Table 5.3. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.36. Measured, all-zero modeled and reconstructed DTFs using 3rd order 
polynomials for locations of 0° elevation and azimuths of (a) -22.5°, (b) -7.5°, (c) 7.5° 
and (d) 22.5°.   
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Azimuth angle 
(degrees) 

RMS error (2-33 KHz) (dB) RMS error (2-22 KHz) (dB) 

-22.5° 1.17 1.29 
-7.5° 1.86 1.30 
7.5° 3.26 1.85 
22.5° 2.34 1.96 

Table 5.3. RMS error values between measured and reconstructed DTFs using 3rd order 
polynomials for locations of 0° elevation and azimuths of -22.5°, -7.5°, 7.5° and 22.5° for 
all-zero modeled DTFs.  
 
Figure 5.37(a) shows the plots for the all-zero modeled and the reconstructed DTFs at the 

four locations with dotted arrows that resemble the tendency of the FN movement with 

the change in azimuth angle. Plots of the changes in the FN frequency with the azimuth 

angle for measured, modeled and reconstructed DTFs are shown in Figure 5.37(b). 
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  (a) 

 
(b) 

Figure 5.37. (a) Plots for all-zero modeled and reconstructed DTFs at locations of 0° 
elevation and azimuths of -22.5° (bottom), -7.5°, 7.5° and 22.5° (top). The dotted arrows 
show the tendency of the FN movement with the change in the azimuth angle. (b) Plots 
of the FN frequency extracted from measured DTFs (green), all-zero modeled DTFs 
(blue) and DTFs reconstructed by moving the zeros in the two groups (red) versus the 
azimuth angle in the horizontal plane. 
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Chapter 6 

SUMMARY AND FUTURE W ORK  

6.1 Summary 

All-pole and all-zero models were presented to model the acoustic directional transfer 

functions (DTFs). While high order models (as high as 64) of all-pole and all-zero gave 

accurate modeling for the DTFs, all-pole and all-zero models of orders as low as 25 were 

still able to model human and cat DTFs with errors comparable to previous research 

findings and with an accurate preservation of the broadband spectral shape and the first 

spectral notch (FN) feature, the latter which is considered an important direction-

dependent spectral feature.  

 

Modeling the direction dependent component of the head related transfer function 

(HRTFs), the DTFs, and using a suitable smoothing technique, RWT, ensured lower 

order modeling capability. “Symmlet 17” wavelet filter bank has been chosen after 

comparing the results of different wavelets according to the preservation of the spectral 

shape, especially the FN frequency in smoothed DTFs compared to measured ones. 

 

An objective dB RMS error criterion was used for comparison with previous research 

regarding DTF modeling using pole/zero models that were also supported by human 
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subjective listening tests in order to perceptually validate the all-pole and all-zero 

modeled DTF.  The modeled DTFs in this project yielded comparable RMS error values. 

In general, all-zero models produced lower error than all-pole models of the same order. 

In addition to validating the proposed all-pole and all-zero models of order 25 according 

to the mean logarithmic (dB) difference between the measured and the modeled DTFs, 

regression analysis and bootstrap resampling techniques showed that the proposed 

models provide an accurate preservation of the FN feature of the broadband spectral 

pattern of the DTFs and the systematic movement of the FN frequency with the change in 

sound source location. To our knowledge, this form of DTF reconstruction validation 

based on one particular cue to sound location (the FN frequency) has not been used. All-

pole and all-zero models presented here have been evaluated using human and cat DTFs.  

 

The proposed all-pole and all-zero models also showed accurate results when the 

modeled broadband spectral shapes were compared to the measured ones using MSC 

function.  Here we evaluated the modeled DTFs with respect to the measured ones and 

showed high MSC values (higher than 0.85) for orders 25 of both all-pole and all-zero 

models when used for both human and cat DTFs.  Thus, with order 25 both models 

accurately preserve the broadband spectral shapes of the DTFs that are necessary for 

accurate sound source localization. 

 

Finally, a two-layer feed-forward back-propagation ANN with different number of 

neurons was presented to predict the location of the sound source (elevation and azimuth 
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angles) using the monaural spectral features of HRTFs of cat data. A NN with 32 neurons 

in the hidden layer and one neuron in the output layer showed a very good performance 

in predicting the elevation angle of the sound source from given HRTFs with an average 

RMS error of 5.15° according to a randomly chosen 43 locations in the frontal field. On 

the other hand, the performance was not as good in azimuth angle prediction where the 

average RMS error with the same network architecture was 16.14°.  

 

A feed-forward back-propagation network with 32 neurons in the hidden layer and one 

neuron in the output layer was presented also as a tool to evaluate the proposed all-pole 

and all-zero modeling techniques by training the network with measured HRTFs as inputs 

and their corresponding locations as the targets. The all-pole and all-zero modeled DTFs 

were simulated by that trained network. According to that evaluation, all-zero models of 

orders 25 and higher (up to 64) outperforms the ones of all-pole models with the same 

orders in modeling the measured DTFs according to the regression test and the resulting 

RMS error values (given in degrees) between the predicted and the actual elevation 

angles. 

 

In the second main part of this study we have tested and proved that there are clear 

systematic movements for the poles in the all-pole model and zeros in the all-zero model 

that accompany the changes in the sound source elevation or azimuth angle. Having low-

order models (in the range of 25) simplified the description of these systematic 
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movements and the tracking for the moving poles and zeros. Both human and cat data 

have been used to support that hypothesis with the proposed all-pole and all-zero models.  

By comparing the results with the change in location of both azimuths and elevations, it 

has been shown that the systematic movement (polar angular displacement) of the poles 

within each group, that shows accompanying systematic movements, is larger with the 

change in elevation compared to that with the change in azimuth. The change in FN as an 

important spectral feature that accompanies the change in elevation or azimuth can justify 

that. FN frequency showed smaller change with the change in azimuth compared to the 

one with elevation over the same angular displacement which is clarified in detail in the 

text. 

 

We have extracted polynomials of first and third order to describe the movements of the 

poles in all-pole models and zeros in all-zero models with the change in sound source 

location and used those equations to reconstruct DTFs of sound sources for other 

locations of finer resolution than the ones used to extract those relations. The 

reconstructed DTFs were compared to the measured ones of same locations. We have 

shown that the reconstructed DTFs preserved the main shape of the spectra, have a 

satisfactory RMS error compared to the measured ones and accurately preserved the FN 

feature in the reconstructed DTFs. The accurate preservation of the FN feature in the 

reconstructed DTFs can be justified by the fact that the systematic movement of the poles 

and zeros of the upper half of the unit circle in the z-plane are mainly noticed between the 

positive real axis and the positive imaginary axis and may extend a little bit to the left of 



 

121 

 

the positive imaginary axis which is the region that affects the FN region the most in both 

human and cat DTF.  

 

6.2 Future Work 

Regarding the techniques and the modeling discussed in this dissertation, further 

investigation is deserved for the following areas: 

1. To assess the fidelity of the reconstructed DTFs fully, human subjective listening test 

should be done. The modeling framework and objective error analysis techniques have 

been fully developed in this dissertation. Modeled DTFs of different orders can be 

generated and human subjective listening tests can be systematically performed to 

validate the present results.   

 

2. As the resolution of the DTFs used to extract the equations needed for the poles/zeros 

movement description increases, it is expected that the accuracy of the reconstructed 

DTFs increases and vice versa. Further investigation of what will be the minimum spatial 

resolution needed for the measured DTFs to allow successful reconstruction of DTFs 

from the measured ones can be done.   

 

3. The joint dependence of the pole/zero trajectories with source location and head and 

pinnae dimensions is an area to investigate. Knowing how poles and zeros may change 

with the change in the size of the pinna and the head will add a useful tool to HRTF/DTF 

modeling among different individuals. Is there a simple scale factor that can be applied to 



 

122 

 

the pole/zero models with the scale factor based on measured head and pinnae 

dimensions? 

 

4. Kulkanri and Colburn (1998) showed that the DTFs can be smoothed considerably 

without affecting the perception.  Potentially, models of order much lower than 25 may 

be achievable after substantial smoothing on the order of what Kulkarni and Colburn 

describe. Even lower order models than 25 would be desirable for investigating and 

modeling the systematic movement of poles/zeros with source location since fewer poles 

or zeros must be tracked. 
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Appendix A  

Locations of DTFs used for NN training in Test 3, section 4.4.3. 

(Angles are given in degrees): 

 
      AZ 
EL -75 -60 -45 -30 -15 0 7.5 15 22.5 30 37.5 45 52.5 60 67.5 75 

-30 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
-22.5 Y  Y  Y Y  Y  Y  Y  Y  Y 
-15 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
-7.5 Y  Y  Y  Y  Y  Y  Y  Y Y 
0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

7.5 Y Y  Y  Y  Y  Y Y  Y  Y Y 
15 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

22.5 Y  Y  Y  Y  Y Y Y  Y Y  Y 
30 Y Y Y Y Y Y Y Y Y  Y Y Y Y Y Y 

37.5 Y  Y  Y  Y  Y Y Y  Y Y  Y 
45 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

52.5 Y  Y  Y Y  Y Y  Y  Y  Y Y 
60 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

67.5 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
75 Y  Y  Y Y  Y Y  Y Y  Y  Y 

82.5 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
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Appendix B 

 List of Abbreviations 

ANN Artificial Neural Network  

AP All-pole 

ARMA Auto-regressive Moving Average 

AZ All-zero 

BGD Batch Gradient Descent  

dB Decibel 

DTF  Directional Transfer Function 

EL Elevation 

FIR Finite Impulse Response 

FN First Notch 

GB Giga Byte 

HRIR Head Related Impulse Response 

HRTF Head Related Transfer Function 

Hz Hertz 

IIR Infinite Impulse Response 

ILD  Inter-aural Level Difference 

ITD Inter-aural Time Difference 

LM Levenbergh-Marquardt 

LPC Linear Predictor Coefficients 

MSC  Magnitude Squared Coherence 

RMS Root Mean Squared 

RWT Redundant Wavelet Transform 

SSL Sound Source Location 

SURE Stein’s Unbiased Risk Estimation 

UCHSC University of Colorado Health Science Center 

VAD Virtual Auditory Display 
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