286 research outputs found

    Problems of procedural rights abuse

    Get PDF
    In this article, the monographic and scientific publications, the practice of unfair realization of rights by the participants of the process are analyzed based on the analysis of certain international legal act

    SWOG 1815: A phase III randomized trial of gemcitabine, cisplatin, and nab-paclitaxel versus gemcitabine and cisplatin in newly diagnosed, advanced biliary tract cancers

    Get PDF
    Background: Biliary tract cancers (BTCs) are a heterogeneous group of malignancies with a dismal prognosis. Gemcitabine-based regimens are the standard of care in advanced disease, but median overall survival (OS) is roughly 12 months. The addition of albumin-bound paclitaxel to gemcitabine and cisplatin (GAP) demonstrated promising efficacy in a 60 patient, single-arm phase II study (Shroff et al, JAMA Oncol 2019), with observed median OS of 19.2 months. Methods: SWOG 1815 is a randomized, open-label, phase III trial comparing GAP to gemcitabine/cisplatin (GC). The study included newly diagnosed advanced BTC patients (pts), randomized 2:1 to GAP vs. GC. GAP included gemcitabine at 800 mg/m2, cisplatin at 25 mg/m2 and albumin-bound paclitaxel at 100 mg/m2 on days 1 and 8 of a 21-day cycle. GC included standard dosing of gemcitabine at 1000 mg/m2 and cisplatin at 25 mg/m2 on days 1 and 8 of a 21-day cycle. Pts were treated until progression. The primary endpoint was overall survival (OS) with a target hazard ratio of 0.7 with 90% power and a 1-sided alpha of 0.025; randomization was stratified by disease site (intrahepatic cholangiocarcinoma [CCA] vs gallbladder adenocarcinoma [GBC] vs extrahepatic CCA), disease stage (locally advanced vs metastatic), and Zubrod PS 0 vs 1. Results: Of 441 eligible pts randomized, 55% were female. 67% of patients had intrahepatic CCA, 16% had GBC and 17% had extrahepatic CCA. Most pts had metastases (73%). Median OS with GAP vs. GC was 14 vs. 12.7 mo respectively (HR 0.93, 95% CI 0.74-1.19, p=0.58), ORR (confirmed and unconfirmed) 34% vs25% (p=0.11) and median PFS 8.2 vs 6.4 mo (HR 0.92, 95% CI 0.72-1.16, p=0.47), respectively. Grade 3 and 4 treatment related adverse events (TRAEs) in ≥10% of pts for GAP and GC were anemia, neutropenia, and thrombocytopenia. GAP had more ≥ grade 3 hematologic AEs compared to the GC arm (60% vs. 45%, p=0.003). Discontinuation due to toxicity was at 24% vs 19% (p=0.26) with GAP vs GC. In exploratory subset analyses, GAP vs GC improved OS in pts with locally advanced disease (medians 19.2 vs 13.7 mo; HR 0.67, 95% CI 0.42- 1.06, p=0.09) and in GBC pts (medians 17.0 vs 9.3 mo; HR 0.74, 95% CI 0.41-1.35, p=0.33). ORR for GAP vs GC in GBC was 50% vs 24% (p=0.09) and for locally advanced disease 28 vs 21% p=0.74. Conclusions: SWOG 1815 did not result in a statistically significant improvement in median OS with GAP vs. GC. The GAP regimen had higher rates of TRAEs without a statistically significant difference in discontinuation rates. Pts with locally advanced disease and GBC may benefit from the use of GAP. Further analyses are ongoing to understand potential benefit of GAP in subsets of BTC pts. Funding: NIH/National Cancer Institute grants CA180888, CA180819, CA180820, CA180821, and CA180868; and in part by Celgene Corporation, Summit, NJ (subsidiary of Bristol Myer Squibb)

    Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer

    Get PDF
    Introduction: In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the nonspecific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods: We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion: Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies

    The Role of UPF0157 in the Folding of M. tuberculosis Dephosphocoenzyme A Kinase and the Regulation of the Latter by CTP

    Get PDF
    BACKGROUND:Targeting the biosynthetic pathway of Coenzyme A (CoA) for drug development will compromise multiple cellular functions of the tubercular pathogen simultaneously. Structural divergence in the organization of the penultimate and final enzymes of CoA biosynthesis in the host and pathogen and the differences in their regulation mark out the final enzyme, dephosphocoenzyme A kinase (CoaE) as a potential drug target. METHODOLOGY/PRINCIPAL FINDINGS:We report here a complete biochemical and biophysical characterization of the M. tuberculosis CoaE, an enzyme essential for the pathogen's survival, elucidating for the first time the interactions of a dephosphocoenzyme A kinase with its substrates, dephosphocoenzyme A and ATP; its product, CoA and an intrinsic yet novel inhibitor, CTP, which helps modulate the enzyme's kinetic capabilities providing interesting insights into the regulation of CoaE activity. We show that the mycobacterial enzyme is almost 21 times more catalytically proficient than its counterparts in other prokaryotes. ITC measurements illustrate that the enzyme follows an ordered mechanism of substrate addition with DCoA as the leading substrate and ATP following in tow. Kinetic and ITC experiments demonstrate that though CTP binds strongly to the enzyme, it is unable to participate in DCoA phosphorylation. We report that CTP actually inhibits the enzyme by decreasing its Vmax. Not surprisingly, a structural homology search for the modeled mycobacterial CoaE picks up cytidylmonophosphate kinases, deoxycytidine kinases, and cytidylate kinases as close homologs. Docking of DCoA and CTP to CoaE shows that both ligands bind at the same site, their interactions being stabilized by 26 and 28 hydrogen bonds respectively. We have also assigned a role for the universal Unknown Protein Family 0157 (UPF0157) domain in the mycobacterial CoaE in the proper folding of the full length enzyme. CONCLUSIONS/SIGNIFICANCE:In view of the evidence presented, it is imperative to assign a greater role to the last enzyme of Coenzyme A biosynthesis in metabolite flow regulation through this critical biosynthetic pathway

    Safety and utility of image-guided research biopsies in relapsed high-grade serous ovarian carcinoma-experience of the BriTROC consortium.

    Get PDF
    BACKGROUND: Investigating tumour evolution and acquired chemotherapy resistance requires analysis of sequential tumour material. We describe the feasibility of obtaining research biopsies in women with relapsed ovarian high-grade serous carcinoma (HGSC). METHODS: Women with relapsed ovarian HGSC underwent either image-guided biopsy or intra-operative biopsy during secondary debulking, and samples were fixed in methanol-based fixative. Tagged-amplicon sequencing was performed on biopsy DNA. RESULTS: We screened 519 patients in order to enrol 220. Two hundred and two patients underwent successful biopsy, 118 of which were image-guided. There were 22 study-related adverse events (AE) in the image-guided biopsies, all grades 1 and 2; pain was the commonest AE. There were pre-specified significant AE in 3/118 biopsies (2.5%). 87% biopsies were fit-for-purpose for genomic analyses. Median DNA yield was 2.87 μg, and was higher in biopsies utilising 14 G or 16 G needles compared to 18 G. TP53 mutations were identified in 94.4% patients. CONCLUSIONS: Obtaining tumour biopsies for research in relapsed HGSC is safe and feasible. Adverse events are rare. The large majority of biopsies yield sufficient DNA for genomic analyses-we recommend use of larger gauge needles and methanol fixation for such biopsies, as DNA yields are higher but with no increase in AEs

    Plasmodium falciparum Adhesion on Human Brain Microvascular Endothelial Cells Involves Transmigration-Like Cup Formation and Induces Opening of Intercellular Junctions

    Get PDF
    Cerebral malaria, a major cause of death during malaria infection, is characterised by the sequestration of infected red blood cells (IRBC) in brain microvessels. Most of the molecules implicated in the adhesion of IRBC on endothelial cells (EC) are already described; however, the structure of the IRBC/EC junction and the impact of this adhesion on the EC are poorly understood. We analysed this interaction using human brain microvascular EC monolayers co-cultured with IRBC. Our study demonstrates the transfer of material from the IRBC to the brain EC plasma membrane in a trogocytosis-like process, followed by a TNF-enhanced IRBC engulfing process. Upon IRBC/EC binding, parasite antigens are transferred to early endosomes in the EC, in a cytoskeleton-dependent process. This is associated with the opening of the intercellular junctions. The transfer of IRBC antigens can thus transform EC into a target for the immune response and contribute to the profound EC alterations, including peri-vascular oedema, associated with cerebral malaria

    Robust Off- and Online Separation of Intracellularly Recorded Up and Down Cortical States

    Get PDF
    BACKGROUND: The neuronal cortical network generates slow (<1 Hz) spontaneous rhythmic activity that emerges from the recurrent connectivity. This activity occurs during slow wave sleep or anesthesia and also in cortical slices, consisting of alternating up (active, depolarized) and down (silent, hyperpolarized) states. The search for the underlying mechanisms and the possibility of analyzing network dynamics in vitro has been subject of numerous studies. This exposes the need for a detailed quantitative analysis of the membrane fluctuating behavior and computerized tools to automatically characterize the occurrence of up and down states. METHODOLOGY/PRINCIPAL FINDINGS: Intracellular recordings from different areas of the cerebral cortex were obtained from both in vitro and in vivo preparations during slow oscillations. A method that separates up and down states recorded intracellularly is defined and analyzed here. The method exploits the crossover of moving averages, such that transitions between up and down membrane regimes can be anticipated based on recent and past voltage dynamics. We demonstrate experimentally the utility and performance of this method both offline and online, the online use allowing to trigger stimulation or other events in the desired period of the rhythm. This technique is compared with a histogram-based approach that separates the states by establishing one or two discriminating membrane potential levels. The robustness of the method presented here is tested on data that departs from highly regular alternating up and down states. CONCLUSIONS/SIGNIFICANCE: We define a simple method to detect cortical states that can be applied in real time for offline processing of large amounts of recorded data on conventional computers. Also, the online detection of up and down states will facilitate the study of cortical dynamics. An open-source MATLAB toolbox, and Spike 2-compatible version are made freely available

    Markers of serotonergic function in the orbitofrontal cortex and dorsal raphé nucleus predict individual variation in spatial-discrimination serial reversal learning.

    Get PDF
    Dysfunction of the orbitofrontal cortex (OFC) impairs the ability of individuals to flexibly adapt behavior to changing stimulus-reward (S-R) contingencies. Impaired flexibility also results from interventions that alter serotonin (5-HT) and dopamine (DA) transmission in the OFC and dorsomedial striatum (DMS). However, it is unclear whether similar mechanisms underpin naturally occurring variations in behavioral flexibility. In the present study, we used a spatial-discrimination serial reversal procedure to investigate interindividual variability in behavioral flexibility in rats. We show that flexibility on this task is improved following systemic administration of the 5-HT reuptake inhibitor citalopram and by low doses of the DA reuptake inhibitor GBR12909. Rats in the upper quintile of the distribution of perseverative responses during repeated S-R reversals showed significantly reduced levels of the 5-HT metabolite, 5-hydroxy-indoleacetic acid, in the OFC. Additionally, 5-HT2A receptor binding in the OFC of mid- and high-quintile rats was significantly reduced compared with rats in the low-quintile group. These perturbations were accompanied by an increase in the expression of monoamine oxidase-A (MAO-A) and MAO-B in the lateral OFC and by a decrease in the expression of MAO-A, MAO-B, and tryptophan hydroxylase in the dorsal raphé nucleus of highly perseverative rats. We found no evidence of significant differences in markers of DA and 5-HT function in the DMS or MAO expression in the ventral tegmental area of low- vs high-perseverative rats. These findings indicate that diminished serotonergic tone in the OFC may be an endophenotype that predisposes to behavioral inflexibility and other forms of compulsive behavior.This work was supported by Medical Research Council Grants (G0701500; G0802729), a 503 Wellcome Trust Programme Grant (grant number 089589/Z/09/Z), and by a Core Award 504 from the Medical Research Council and the Wellcome Trust to the Behavioural and Clinical 505 21 Neuroscience Institute (MRC Ref G1000183; WT Ref 093875/Z/10/Z). RLB was supported 506 by a studentship from the Medical Research Council. JA was supported by a Fellowship from 507 the Swedish Research Council (350-2012-230). BJ was supported by Fellowships from the 508 AXA Research Fund and the National Health and Medical Research Council of Australia. 509 Financial support from the Fredrik and Ingrid Thuring Foundation is also acknowledged.This is the accepted manuscript. The final version is available from Nature Publishing at http://www.nature.com/npp/journal/vaop/ncurrent/full/npp2014335a.html

    Epistasis among Presynaptic Serotonergic System Components

    Get PDF
    Epistatic interactions among regulatory components of the serotonin (5-HT) neurotransmitter system may be an important aspect of 5-HT function. Because 5-HT dysregulation is associated with several common psychiatric disorders, the potential for epistasis among genetic variants in the 5-HT transporter (SERT), 5-HT 1B terminal autoreceptor and the 5-HT 1A somatodendritic autoreceptor should be examined. In this study, output from a dynamic minimal model of 5-HT function was compared to empirical results in the literature. Parameters representing extracellular 5-HT clearance rates (SERT), 5-HT release levels (5-HT 1B ) and inhibitory thresholds (the amount of extracellular 5-HT above which cell firing is inhibited, an indication of 5-HT 1A autoreceptor sensitivity) were varied to simulate genetic deletion (i.e. knockout) of each component singly, and in combination. Simulated knockout effects on extracellular 5-HT level and presynaptic neural firing rates were in the same direction and of similar relative magnitude as studies in the literature. Epistasis among presynaptic components appears to be important in the 5-HT system’s regulation of extracellular 5-HT levels, but not of firing rates.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44113/1/10519_2004_Article_1019.pd

    The role of the ubiquitination-proteasome pathway in breast cancer: Applying drugs that affect the ubiquitin-proteasome pathway to the therapy of breast cancer

    Get PDF
    The ubiquitin-proteasome pathway is responsible for most eukaryotic intracellular protein degradation. This pathway has been validated as a target for antineoplastic therapy using both in vitro and preclinical models of human malignancies, and is influenced as part of the mechanism of action of certain chemotherapeutic agents. Drugs whose primary action involves modulation of ubiquitin-proteasome activity, most notably the proteasome inhibitor PS-341, are currently being evaluated in clinical trials, and have already been found to have significant antitumor efficacy. On the basis of the known mechanisms by which these agents work, and the available clinical data, they would seem to be well suited for the treatment of breast neoplasms. Such drugs, alone and especially in combination with current chemotherapeutics, may well represent important advances in the therapy of patients with breast cancer
    corecore